Determination of source functions in composite type system of equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 275-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of identification of the source function for semievolutionary system of two partial differential equations is considered in the paper. The investigated system of equations is obtained from the original system by adding the time derivative containing a small parameter $\varepsilon>0$ to the elliptic equation. The Cauchy problem and the second boundary-value problem are considered.
Keywords: inverse problem, the method of weak approximation, small parameter
Mots-clés : identification, parabolic equation, convergence.
@article{JSFU_2014_7_3_a0,
     author = {Yury Ya. Belov and Vera G. Kopylova},
     title = {Determination of source functions in composite type system of equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {275--288},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a0/}
}
TY  - JOUR
AU  - Yury Ya. Belov
AU  - Vera G. Kopylova
TI  - Determination of source functions in composite type system of equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 275
EP  - 288
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a0/
LA  - en
ID  - JSFU_2014_7_3_a0
ER  - 
%0 Journal Article
%A Yury Ya. Belov
%A Vera G. Kopylova
%T Determination of source functions in composite type system of equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 275-288
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a0/
%G en
%F JSFU_2014_7_3_a0
Yury Ya. Belov; Vera G. Kopylova. Determination of source functions in composite type system of equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 275-288. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a0/

[1] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekkar, Inc., New York, 1999 | MR

[2] V. G. Romanov, Inverse problems for differential equations, Novosobirsky Gos. Universitet, Novosibirsk, 1978 (in Russian) | MR

[3] Yu. Ya. Belov, V. G. Kopylova, “On some identification problem for source function to one semievolutionary system”, Journal of Inverse and Ill-posed Problems, 20:5–6 (2012), 723–743 | MR | Zbl

[4] Yu. Ya. Belov, S. A. Cantor, The method of weak approximation, Krasnoyarsky Gos. Universitet, 1990 (in Russian)

[5] N. N. Yanenko, Fractional steps for solving multidimensional problems of mathematical physics, Nauka, Novosibirsk, 1967 (in Russian)

[6] L. V. Kantorovich, G. P. Akilov, Functional analysis, Nauka, M., 1977 (in Russian) | MR

[7] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Nauka, M., 1988 (in Russian) | MR