Examples of groups with the same number of subgroups of every index
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 95-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we show that certain non-isomorphic free amalgamated products with cyclic amalgamated subgroup and the same type have the same number of subgroups of every index.
Keywords: non-isomorphic free amalgamated products.
@article{JSFU_2014_7_1_a9,
     author = {Chris W. Parker and Atapattu A. C. Kanchana},
     title = {Examples of groups with the same number of subgroups of every index},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {95--99},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a9/}
}
TY  - JOUR
AU  - Chris W. Parker
AU  - Atapattu A. C. Kanchana
TI  - Examples of groups with the same number of subgroups of every index
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 95
EP  - 99
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a9/
LA  - en
ID  - JSFU_2014_7_1_a9
ER  - 
%0 Journal Article
%A Chris W. Parker
%A Atapattu A. C. Kanchana
%T Examples of groups with the same number of subgroups of every index
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 95-99
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a9/
%G en
%F JSFU_2014_7_1_a9
Chris W. Parker; Atapattu A. C. Kanchana. Examples of groups with the same number of subgroups of every index. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 95-99. http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a9/

[1] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system. I. The user language”, Computational algebra and number theory (London, 1993), J. Symbolic Comput., 24:3–4 (1997), 235–265 | DOI | MR | Zbl

[2] R. T. Curtis, “Monomial modular representations and construction of the Held group”, J. Algebra, 184:3 (1996), 1205–1227 | DOI | MR | Zbl

[3] M. P. F. du Sautoy, J. J. McDermott, G. C. Smith, “Zeta functions of crystallographic groups and analytic continuation”, Proc. London Math. Soc., 79:3 (1999), 511–534 | DOI | MR | Zbl

[4] D. M. Goldschmidt, “Automorphisms of trivalent graphs”, Ann. of Math., 111:2 (1980), 377–406 | DOI | MR | Zbl

[5] A. Lubotzky, D. Segal, Subgroup growth, Progress in Mathematics, 212, Birkhäuser Verlag, Basel, 2003 | MR | Zbl

[6] A. D. Mednykh, “On the number of subgroups in the fundamental group of a closed surface”, Comm. Algebra, 16:10 (1988), 2137–2148 | DOI | MR | Zbl

[7] J.-P. Serre, Trees, Translated from the French by John Stillwell, Springer-Verlag, Berlin–New York, 1980 | MR | Zbl

[8] W. W. Stothers, “Subgroups of finite index in a free product with amalgamated subgroup”, Math. Comp., 36:154 (1981), 653–662 | DOI | MR | Zbl