An extremal problem related to analytic continuation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 79-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the usual variational formulation of the problem of analytic continuation from an arc on the boundary of a plane domain does not lead to a relaxation of this overdetermined problem. To attain such a relaxation, we bound the domain of the functional, thus changing the Euler equations.
Keywords: extremal problems, $p$-Laplace operator, mixed problems.
Mots-clés : Euler equations
@article{JSFU_2014_7_1_a7,
     author = {Olimjan Makhmudov and Nikolai Tarkhanov},
     title = {An extremal problem related to analytic continuation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {79--90},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a7/}
}
TY  - JOUR
AU  - Olimjan Makhmudov
AU  - Nikolai Tarkhanov
TI  - An extremal problem related to analytic continuation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 79
EP  - 90
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a7/
LA  - en
ID  - JSFU_2014_7_1_a7
ER  - 
%0 Journal Article
%A Olimjan Makhmudov
%A Nikolai Tarkhanov
%T An extremal problem related to analytic continuation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 79-90
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a7/
%G en
%F JSFU_2014_7_1_a7
Olimjan Makhmudov; Nikolai Tarkhanov. An extremal problem related to analytic continuation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 79-90. http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a7/

[1] D. R. Adams, L. I. Hedberg, Functional Spaces and Potential Theory, Springer-Verlag, Berlin et al., 1996 | MR

[2] L. A. Aizenberg, Carleman's Formulas in Complex Analysis. Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1993 | MR

[3] G. I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Operators, Nauka, Moscow, 1973

[4] D. Khavinson, M. Stessin, “Certain linear extremal problems in Bergman spaces of analytic functions”, Indiana Univ. Math. J., 46:3 (1997), 933–974 | DOI | MR | Zbl

[5] J. J. Kohn, “Harmonic integrals on strongly pseudoconvex manifolds. I”, Ann. Math., 78:1 (1963), 112–148 ; “II”, Ann. Math., 79:3 (1964), 450–472 | DOI | MR | Zbl | DOI | MR | Zbl

[6] V. A. Kozlov, V. G. Maz'ya, A. V. Fomin, “An iterative method for solving the Cauchy problem for elliptic equations”, Comput. Math. and Math. Phys., 31:1 (1991), 45–52 | MR | Zbl

[7] O. A. Ladyzhenskaya, N. M. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 | MR | Zbl

[8] G. M. Lieberman, “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., 12 (1988), 1203–1219 | DOI | MR | Zbl

[9] J. L. Lions, E. Magenes, “Problèmes aux limites non homogènes, IV”, Ann. Scu. Norm. Sup. Pisa, 15 (1961), 311–326 | MR | Zbl

[10] I. Ly, N. Tarkhanov, “A variational approach to the Cauchy problem for nonlinear elliptic differential equations”, J. of Inverse and Ill-Posed Problems, 17:6 (2009), 595–610 | MR | Zbl

[11] I. Ly, N. Tarkhanov, “The Dirichlet to Neumann operator for nonlinear elliptic equations”, Complex Analysis and Dynamical Systems IV, Contemporary Mathematics, 553, Amer. Math. Soc., Providence, RI, 2011, 115–126 | MR

[12] K. Makhmudov, O. Makhmudov, N. Tarkhanov, “Equations of Maxwell type”, J. Math. Anal. Appl., 378:1 (2011), 64–75 | DOI | MR | Zbl

[13] O. Makhmudov, I. Niyozov, N. Tarkhanov, “The Cauchy problem of couple-stress elasticity”, Complex Analysis and Dynamical Systems III, Contemporary Mathematics, 455, Amer. Math. Soc., Providence, RI, 2008, 297–310 | DOI | MR | Zbl

[14] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[15] C. B. Morrey, “Second-order elliptic equations in several variables and Hölder continuity”, Math. Z., 72 (1959), 146–164 | DOI | MR | Zbl

[16] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin et al., 1966 | MR | Zbl

[17] W. Ritz, “Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik”, J. reine und angew. Math., 135 (1909), 1–61

[18] M. Rosenblum, “Some Hilbert space extremal problems”, Proc. Amer. Math. Soc., 16 (1965), 687–691 | DOI | MR | Zbl

[19] M. Schechter, “Mixed boundary problems for general elliptic equations”, Commun. on Pure and Appl. Math., 13 (1960), 183–201 | DOI | MR | Zbl

[20] I. Shestakov, “On Zaremba problem for the $p$-Laplace operator”, Complex Analysis and Dynamical Systems V, Contemporary Mathematics, 591, Amer. Math. Soc., Providence, RI, 2013

[21] A. Shlapunov, N. Tarkhanov, “Mixed problems with a parameter”, Russian J. Math. Phys., 12:1 (2005), 97–119 | MR | Zbl

[22] V. Stepanenko, N. Tarkhanov, “The Cauchy problem for Chaplygin's system”, Complex Variables and Elliptic Equations, 55:7 (2010), 647–656 | MR | Zbl

[23] E. J. Straube, “Harmonic and analytic functions admitting a distribution boundary value”, Ann. Scuola Norm. Super. Pisa, 11:4 (1984), 559–591 | MR | Zbl

[24] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag, Berlin, 1995 | MR | Zbl

[25] K. Yosida, Functional Analysis, Springer-Verlag, Berlin et al., 1965 | Zbl

[26] S. Zaremba, “Sur un problème mixte relatif a l'équation de Laplace”, Bulletin de l'Académie des sciences de Cracovie, Classe des sciences mathématiques et naturelles, série A, 1910, 313–344 | Zbl