Nanodiamond collective electron states and their localization
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 35-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The collective states despite their importance are rarely used to describe the electron structure of dielectric materials. The nature of the unrelated to impurities unpaired spins found experimentally in the nanodiamond is still under discussion. We propose the explanation of their nature in terms of the collective electron states. Collective states are studied by solving a one-particle one-dimensional Schrödinger equation in the Kronig–Penney potential and by ab initio computations of ground state wavefunctions of diamondoids $C_{78}H_{64}$, $C_{123}H_{100}$ and $C_{211}H_{140}$ at the DFT R-B3LYP/6-31G(d,p) level of theory. Three distinct classes were found: collective bonding states resembling modulated particle in a box solutions; surface-localized non-bonding conductive Tamm states and subsurface-localized bonding states for non-uniformly compressed nanodiamond. The existence of the unpaired spins is supposed to result from the spin-density fluctuation effects significant on the nanoscale collective and spread subsurface states.
Keywords: nanoscale, collective electron states, Tamm states, subsurface electron states, nanodiamond paramagnetism, spin-density fluctuations.
Mots-clés : nanodiamond
@article{JSFU_2014_7_1_a3,
     author = {Ivan A. Denisov and Andrey A. Zimin and Leslie A. Bursill and Peter I. Belobrov},
     title = {Nanodiamond collective electron states and their localization},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {35--45},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a3/}
}
TY  - JOUR
AU  - Ivan A. Denisov
AU  - Andrey A. Zimin
AU  - Leslie A. Bursill
AU  - Peter I. Belobrov
TI  - Nanodiamond collective electron states and their localization
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 35
EP  - 45
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a3/
LA  - en
ID  - JSFU_2014_7_1_a3
ER  - 
%0 Journal Article
%A Ivan A. Denisov
%A Andrey A. Zimin
%A Leslie A. Bursill
%A Peter I. Belobrov
%T Nanodiamond collective electron states and their localization
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 35-45
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a3/
%G en
%F JSFU_2014_7_1_a3
Ivan A. Denisov; Andrey A. Zimin; Leslie A. Bursill; Peter I. Belobrov. Nanodiamond collective electron states and their localization. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 35-45. http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a3/

[1] A. A. Abrikosov, Introduction to the theory of normal metals, Academic Press, New York–London, 1972

[2] B. B. Pate, “The diamond surface: atomic and electronic structure”, Surface science, 165 (1986), 83–142 | DOI

[3] W. Yang et al., “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates”, Nature Materials, 1 (2002), 253–257 | DOI

[4] J. E. Butler, A. V. Sumant, “The CVD of nanodiamond materials”, Chemical Vapor Deposition, 14 (2008), 145–160 | DOI

[5] J. E. Butler, Y. A. Mankelevich, A. Cheesman, J. Ma, M. N. R. Ashfold, “Understanding the chemical vapor deposition of diamond: recent progress”, Journal of Physics: Condensed Matter, 21 (2009), 364201 | DOI

[6] A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials”, Nature Materials, 10 (2011), 569–581 | DOI

[7] I. E. Tamm, “Über eine mögliche art der elektronenbindung an kristalloberflächen”, Z. Phys. Sowjetunion, 1 (1932), 733–746 | Zbl

[8] J. Koutecký, “Contribution to the theory of the surface electronic states in the One-Electron approximation”, Physical Review, 108 (1957), 13–18 | DOI | Zbl

[9] P. Phariseau, “The energy spectrum of an amorphous substance”, Physica, 26 (1960), 1185–1191 | DOI | MR | Zbl

[10] L. A. Bursill, A. L. Fullerton, L. N. Bourgeois, “Size and surface structure of diamond nano-crystals”, International Journal of Modern Physics B, 15 (2001), 4087–4102 | DOI

[11] J. Peng, S. Bulcock, P. Belobrov, L. Bursill, “Surface bonding states of nano-crystalline diamond balls”, International Journal of Modern Physics B, 15 (2001), 4071–4086 | DOI

[12] X. Fang, J. Mao, E. M. Levin, K. Schmidt-Rohr, “Nonaromatic Core-Shell structure of nanodiamond from Solid-State NMR spectroscopy”, Journal of the American Chemical Society, 131 (2009), 1426–1435 | DOI

[13] P. I. Belobrov, L. A. Bursill, K. I. Maslakov, A. P. Dementjev, “Electron spectroscopy of nanodiamond surface states”, Applied Surface Science, 215 (2003), 169–177 | DOI

[14] C. E. Patrick, F. Giustino, “Quantum nuclear dynamics in the photophysics of diamondoids”, Nature Communications, 4 (2013), Article number: 2006 | DOI

[15] D. R. Lide et al., Handbook of Chemistry and Physics, v. 131, 90 edn., National Institute of Standards and Technology, 2009

[16] M. W. Schmidt et al., “General atomic and molecular electronic structure system”, Journal of Computational Chemistry, 14 (1993), 1347–1363 | DOI

[17] E. J. Baerends, O. V. Gritsenko, “A quantum chemical view of density functional theory”, The Journal of Physical Chemistry A, 101 (1997), 5383–5403 | DOI

[18] R. Stowasser, R. Hoffmann, “What do the Kohn–Sham orbitals and eigenvalues mean?”, Journal of the American Chemical Society, 121 (1999), 3414–3420 | DOI

[19] N. M. O'Boyle et al., “Open babel: An open chemical toolbox”, Journal of cheminformatics, 3 (2011), 33 | DOI

[20] M. D. Hanwell et al., “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform”, Journal of Cheminformatics, 4 (2012), 17 | DOI

[21] T. Halgren, R. Nachbar, “Merck molecular force field. IV. Conformational energies and geometries for MMFF94”, Journal of Computational Chemistry, 17 (1996), 587–615

[22] M. J. Dewar, “Chemical implications of $\sigma$ conjugation”, Journal of the American Chemical Society, 106 (1984), 669–682 | DOI

[23] W. Humphrey, A. Dalke, K. Schulten, “VMD: visual molecular dynamics”, Journal of Molecular Graphics, 14 (1996), 33–38 | DOI

[24] M. P. Ray et al., “Towards electrons floating over diamond”, Bulletin of the American Physical Society, 56, 2011, W27.015

[25] F. Maier, M. Riedel, B. Mantel, J. Ristein, L. Ley, “Origin of surface conductivity in diamond”, Physical review letters, 85 (2000), 3472–3475 | DOI

[26] P. I. Belobrov, S. K. Gordeev, E. A. Petrakovskaya, O. V. Falaleev, “Paramagnetic properties of nanodiamond”, Doklady Physics, 46 (2001), 459–462 | DOI

[27] E. Levin et al., “Magnetization and $^{13}C$ NMR spin-lattice relaxation of nanodiamond powder”, Physical Review B, 77 (2008), 054418, 10 pp. | DOI

[28] S. K. Gordeev et al., “Specific features in the change of electrical resistivity of carbon nanocomposites based on nanodiamonds under neutron irradiation”, Physics of the Solid State, 55 (2013), 1480–1486 | DOI

[29] J. Jiang et al., “Structure dependent quantum confinement effect in hydrogen-terminated nanodiamond clusters”, Journal of Applied Physics, 108 (2010), 094303 | DOI

[30] L. Tian et al., “Carbon-Centered free radicals in particulate matter emissions from wood and coal combustion”, Energy fuels: an American Chemical Society, 23 (2009), 2523–2526 | DOI

[31] A. M. Panich, “Nuclear magnetic resonance studies of nanodiamonds”, Critical Reviews in Solid State and Materials Sciences, 37 (2012), 276–303 | DOI

[32] H. Fukutome, “Spin density wave and charge transfer wave in long conjugated molecules molecules”, Progress of Theoretical Physics, 40 (1968), 1227–1245 | DOI

[33] G. K. Walters, T. L. Estle, “Paramagnetic resonance of defects introduced near the surface of solids by mechanical damage”, Journal of Applied Physics, 32 (1961), 1854–1859 | DOI