Analysis of financial time series with binary $n$-grams frequency dictionaries
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 112-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a novel approach to statistical analysis of financial time series. The approach is based on $n$-grams frequency dictionaries derived from the quantized market data. Such dictionaries are studied by evaluating their information capacity using relative entropy. A specific quantization of (originally continuous) financial data is considered: so called binary quantization. Possible applications of the proposed technique include market event study with the $n$-grams of higher information value. The finite length of the input data presents certain computational and theoretical challenges discussed in the paper. also, some other versions of a quantization are discussed.
Keywords: order, entropy, mutual entropy, indicator, trend.
@article{JSFU_2014_7_1_a11,
     author = {Michael G. Sadovsky and Igor Borovikov},
     title = {Analysis of financial time series with binary $n$-grams frequency dictionaries},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {112--123},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a11/}
}
TY  - JOUR
AU  - Michael G. Sadovsky
AU  - Igor Borovikov
TI  - Analysis of financial time series with binary $n$-grams frequency dictionaries
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 112
EP  - 123
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a11/
LA  - en
ID  - JSFU_2014_7_1_a11
ER  - 
%0 Journal Article
%A Michael G. Sadovsky
%A Igor Borovikov
%T Analysis of financial time series with binary $n$-grams frequency dictionaries
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 112-123
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a11/
%G en
%F JSFU_2014_7_1_a11
Michael G. Sadovsky; Igor Borovikov. Analysis of financial time series with binary $n$-grams frequency dictionaries. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 112-123. http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a11/

[1] E. F. Fama, L. Fisher, M. C. Jensen, R. Roll, “The adjusment of stock prices to new information”, Int. Economic Review, 10:1 (1969), 1–21 | DOI

[2] A. W. Lo, A. C. McKinlay, A Non-Random Walk down Wall Street, Princeton Univ. Press, 1999

[3] R. S. Tsay, Analysis of Financial Time Series. Financial Econometrics, Wiley Sons, Inc., 2002 | MR | Zbl

[4] J. J. Murphy, Techincal analisys of the financial markets, A comprehensive guide to trading methods and applications, New-York institute of finance, 1999

[5] G. N. Pettengill, S. Sundaram, I. Mathur, “The Conditional Relation between Beta and Returns”, J. of Financial and Quantitative Anal., 30:1 (1995), 101–116 | DOI

[6] M. D. Atchison, K. C. Butler, R. R. Simonds, “Nonsynchronous securities trading and market index autocorrelation”, J. of Finance, 42:1 (1987), 111–118 | DOI

[7] Ya. Amihud, H. Mendelson, “Trading mechanisms and stock returns: an empirical investigation”, J. of Finance, 42:3 (1987), 533–553 | DOI

[8] N. N. Bugaenko, A. N. Gorban, M. G. Sadovsky, “Towards the definition of information content of nucleotide sequences”, Molecular biology (Moscow), 30:5 (1996), 529–541

[9] N. N. Bugaenko, A. N. Gorban, M. G. Sadovsky, “The information capacity of nucleotide sequences and their fragments”, Biophysics, 5 (1997), 1063–1069

[10] N. N. Bugaenko, A. N. Gorban, M. G. Sadovsky, “Maximum entropy method in analysis of genetic text and measurement of its information content”, Open Systems Information Dyn., 5:2 (1998), 265–278 | DOI | Zbl