Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2014_7_1_a0, author = {Bakhrom I. Abdullaev}, title = {$\mathcal P$-measure in the class of $m-wsh$ functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {3--9}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a0/} }
TY - JOUR AU - Bakhrom I. Abdullaev TI - $\mathcal P$-measure in the class of $m-wsh$ functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 3 EP - 9 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a0/ LA - en ID - JSFU_2014_7_1_a0 ER -
Bakhrom I. Abdullaev. $\mathcal P$-measure in the class of $m-wsh$ functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a0/
[1] M. Brelot, Foundations of classical potential theory, Wiley, NY, 1964 | MR
[2] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966 (in Russian) | MR | Zbl
[3] A. Sadullaev, “Plurisubharmonic measures and capacities on complex manifolds”, Advances math. Sciences, 36:4 (1981), 53–105 | MR | Zbl
[4] E. Bedford, B. A. Taylor, “A new capacity for plurisubharmonic functions”, Acta Math., 149:1–2 (1982), 1–40 | DOI | MR | Zbl
[5] B. I. Abdullaev, “Subharmonic functions on complex hypersupfaces of $\mathbb C^n$”, Journal of Siberian Federal University. Mathematics Physics, 6:4 (2013), 409–416
[6] B. I. Abdullaev, F. K. Ataev, Nevanlinna's characteristic functions with complex Hessian potential, Preprint
[7] B. V. Shabat, Distributions of values of holomorphic mappings, Translations of Mathematical Monographs, 61, Providence, RI, 1985 | MR | Zbl
[8] A. Sadullaev, “Deficient divisors in the Valiron sense”, Mat. Sb., 108(150):4 (1979), 567–580 | MR | Zbl
[9] E. M. Chirka, Complex analytic sets, Nauka, Moscow, 1985 (in Russian)
[10] J. P. Demailly, “Measures de Monge-Ampere et measures Plurisousharmoniques”, Math. Z., 194 (1987), 519–564 | DOI | MR | Zbl
[11] Z. Blocki, “Weak solutions to the complex Hessian equation”, Ann. Inst. Fourier (Grenoble), 55:5 (2005), 1735–1756 | DOI | MR | Zbl