$\mathcal P$-measure in the class of $m-wsh$ functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we study the $\mathcal P$-measure and $\mathcal P$-capacity in the class of $m-wsh$ functions and prove a number of their properties.
Keywords: $m-wsh$ function, $\mathcal P$-measure, $\mathcal P$-capacity, $mw$-regular point.
@article{JSFU_2014_7_1_a0,
     author = {Bakhrom I. Abdullaev},
     title = {$\mathcal P$-measure in the class of $m-wsh$ functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a0/}
}
TY  - JOUR
AU  - Bakhrom I. Abdullaev
TI  - $\mathcal P$-measure in the class of $m-wsh$ functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 3
EP  - 9
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a0/
LA  - en
ID  - JSFU_2014_7_1_a0
ER  - 
%0 Journal Article
%A Bakhrom I. Abdullaev
%T $\mathcal P$-measure in the class of $m-wsh$ functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 3-9
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a0/
%G en
%F JSFU_2014_7_1_a0
Bakhrom I. Abdullaev. $\mathcal P$-measure in the class of $m-wsh$ functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a0/

[1] M. Brelot, Foundations of classical potential theory, Wiley, NY, 1964 | MR

[2] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966 (in Russian) | MR | Zbl

[3] A. Sadullaev, “Plurisubharmonic measures and capacities on complex manifolds”, Advances math. Sciences, 36:4 (1981), 53–105 | MR | Zbl

[4] E. Bedford, B. A. Taylor, “A new capacity for plurisubharmonic functions”, Acta Math., 149:1–2 (1982), 1–40 | DOI | MR | Zbl

[5] B. I. Abdullaev, “Subharmonic functions on complex hypersupfaces of $\mathbb C^n$”, Journal of Siberian Federal University. Mathematics Physics, 6:4 (2013), 409–416

[6] B. I. Abdullaev, F. K. Ataev, Nevanlinna's characteristic functions with complex Hessian potential, Preprint

[7] B. V. Shabat, Distributions of values of holomorphic mappings, Translations of Mathematical Monographs, 61, Providence, RI, 1985 | MR | Zbl

[8] A. Sadullaev, “Deficient divisors in the Valiron sense”, Mat. Sb., 108(150):4 (1979), 567–580 | MR | Zbl

[9] E. M. Chirka, Complex analytic sets, Nauka, Moscow, 1985 (in Russian)

[10] J. P. Demailly, “Measures de Monge-Ampere et measures Plurisousharmoniques”, Math. Z., 194 (1987), 519–564 | DOI | MR | Zbl

[11] Z. Blocki, “Weak solutions to the complex Hessian equation”, Ann. Inst. Fourier (Grenoble), 55:5 (2005), 1735–1756 | DOI | MR | Zbl