Applications of operational approach to evaluation of projects of economic systems development
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 495-505.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a technique of obtaining the investment project optimal cost for the development of economic systems. The considered systems are described by multi-step multicriteria linear programming problems with discounting coefficients in the objective functions. The proposed technique is based on the operator which is equivalent to the $z$-transform for finite time interval. Application of the proposed technique allows one to classify the projects as unsuitable or potentially effective during the preliminary analysis stage.
Keywords: development of economic systems, investment project, the multi-step multicriteria linear programming problem, operational approach.
@article{JSFU_2013_6_4_a9,
     author = {Pavel N. Pobedash},
     title = {Applications of operational approach to evaluation of projects of economic systems development},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {495--505},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a9/}
}
TY  - JOUR
AU  - Pavel N. Pobedash
TI  - Applications of operational approach to evaluation of projects of economic systems development
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 495
EP  - 505
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a9/
LA  - en
ID  - JSFU_2013_6_4_a9
ER  - 
%0 Journal Article
%A Pavel N. Pobedash
%T Applications of operational approach to evaluation of projects of economic systems development
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 495-505
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a9/
%G en
%F JSFU_2013_6_4_a9
Pavel N. Pobedash. Applications of operational approach to evaluation of projects of economic systems development. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 495-505. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a9/

[1] P. N. Pobedash, “Model analysis of the optimal control by real investments on the basis of operational approach”, Scientific and technical bulletin of St. Petersburg State University. Series “Computer science. Telecommunication. Control”, 2009, no. 6(91), 75–81

[2] A. V. Medvedev, P. N. Pobedash, “Two criteria evaluation of the development effectiveness of the regional economy in conditions of demand certainy and maximal capital productivity of BPA”: F. V. Medvedev, Use of $z$-transform to investigation of multicriteria linear models of the regional economic development, Siberskii gosudarstvennyi aerokosmicheskii universitet, Krasnoyarsk, 2008, Chapter 2, 53–116 (in Russian)

[3] A. V. Medvedev, P. N. Pobedash, E. S. Semenkin, “Mathematical model of the global social and economic development”, Vestnik Siberskogo gosudarstvennogo aerokosmicheskogo universiteta, 5:31 (2010), 137–142 (in Russian)

[4] V. V. Podinovsky, V. D. Nogin, Parato-optimal solutions of multicriterion problems, Nauka, Moscow, 1982 (in Russian)

[5] F. V. Medvedev, P. N. Pobedash, A. V. Smolyaninov, M. A. Gorbunov, Constructor and solver of discrete problem of optimal control (“Karma”), Certificate Rospatenta. Registratsionnyi nomer 2008614387, 11.09.2008

[6] A. V. Medvedev, P. N. Pobedash, “Asymptotic models analysis of the effective economic development of the system ‘producer–tax center’ ”, Scientific and technical Bulletin of the Volga region, 6 (2011), 213–217

[7] P. N. Pobedash, “Analysis of the model of industrial enterprises innovative development on the basis of the operational approach”, Scientific and technical bulletin of St. Petersburg State University, Series “Computer science. Telecommunication. Control”, 2010, no. 5(108), 71–74