Problems of bounding the $p$-length and Fitting height of finite soluble groups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 462-478.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of some open problems and recent results about bounding the Fitting height and $p$-length of finite soluble groups. In many problems of finite group theory, nowadays the classification greatly facilitates reduction to soluble groups. Bounding their Fitting height or $p$-length can be regarded as further reduction to nilpotent groups. This is usually achieved by methods of representation theory, such as Clifford's theorem or theorems of Hall–Higman type. In some problems, it is the case of nilpotent groups where open questions remain, in spite of great successes achieved, in particular, by using Lie ring methods. But there are also important questions that still require reduction to nilpotent groups; the present survey is focused on reduction problems of this type. As examples, we discuss finite groups with fixed-point-free and almost fixed-point-free automorphisms, as well as generalizations of the Restricted Burnside Problem. We also discuss results on coset identities, which have applications in the study of profinite groups. Finally, we mention the open problem of bounding the Fitting height in the study of the analogue of the Restricted Burnside Problem for Moufang loops.
Keywords: Fitting height, $p$-length, soluble finite group, nilpotent group, profinite group, Restricted Burnside Problem, coset identity.
Mots-clés : automorphism
@article{JSFU_2013_6_4_a6,
     author = {Evgeny I. Khukhro},
     title = {Problems of bounding the $p$-length and {Fitting} height of finite soluble groups},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {462--478},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a6/}
}
TY  - JOUR
AU  - Evgeny I. Khukhro
TI  - Problems of bounding the $p$-length and Fitting height of finite soluble groups
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 462
EP  - 478
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a6/
LA  - en
ID  - JSFU_2013_6_4_a6
ER  - 
%0 Journal Article
%A Evgeny I. Khukhro
%T Problems of bounding the $p$-length and Fitting height of finite soluble groups
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 462-478
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a6/
%G en
%F JSFU_2013_6_4_a6
Evgeny I. Khukhro. Problems of bounding the $p$-length and Fitting height of finite soluble groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 462-478. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a6/

[1] V. V. Belyaev, B. Hartley, “Centralizers of finite nilpotent subgroups in locally finite groups”, Algebra Logic, 35:4 (1996), 217–228 | DOI | MR | Zbl

[2] T. Berger, “Nilpotent fixed point free automorphism groups of solvable groups”, Math. Z., 131 (1973), 305–312 | DOI | MR | Zbl

[3] T. R. Berger, F. Gross, “$2$-length and the derived length of a Sylow $2$-subgroup”, Proc. London Math. Soc. (3), 34 (1977), 520–534 | DOI | MR | Zbl

[4] R. Brauer, K. A. Fowler, “On groups of even order”, Ann. Math. (2), 62 (1955), 565–583 | DOI | MR | Zbl

[5] B. Bruno, F. Napolitani, “A note on nilpotent-by-Chernikov groups”, Glasg. Math. J., 46:2 (2004), 211–215 | DOI | MR | Zbl

[6] E. G. Bryukhanova, “The $2$-length and $2$-period of a finite solvable group”, Algebra Logic, 18:1 (1979), 5–20 | DOI | MR | Zbl

[7] E. G. Bryukhanova, “The relation between $2$-length and derived length of a Sylow $2$-subgroup of a finite soluble group”, Math. Notes, 29:1–2 (1981), 85–90 | DOI | MR | Zbl

[8] A. H. Clifford, “Representations induced in an invariant subgroup”, Ann. Math. (2), 38 (1937), 533–550 | DOI | MR | Zbl

[9] G. Ercan, “On a Fitting length conjecture without the coprimeness condition”, Monatsh. Math., 167:2 (2012), 175–187 | DOI | MR | Zbl

[10] G. Ercan, İ. Ş. Güloğlu, “Fixed point free action on groups of odd order”, J. Algebra, 320 (2008), 426–436 | DOI | MR | Zbl

[11] E. C. Dade, “Carter subgroups and Fitting heights of finite solvable groups”, Illinois J. Math., 13 (1969), 449–514 | MR | Zbl

[12] P. Flavell, S. Guest, R. Guralnick, “Characterizations of the solvable radical”, Proc. Amer. Math. Soc., 138 (2010), 1161–1170 | DOI | MR | Zbl

[13] P. Fong, “On orders of finite groups and centralizers of $p$-elements”, Osaka J. Math., 13 (1976), 483–489 | MR | Zbl

[14] G. Glauberman, “On loops of odd order. II”, J. Algebra, 8 (1968), 393–414 | DOI | MR | Zbl

[15] G. Glauberman, C. R. B. Wright, “Nilpotence of finite Moufang $2$-loops”, J. Algebra, 8 (1968), 415–417 | DOI | MR | Zbl

[16] A. N. Grishkov, “The weakened Burnside problem for Moufang loops of prime period”, Siberian Math. J., 28 (1987), 401–405 | DOI | MR | Zbl

[17] F. Gross, “The $2$-length of a finite solvable group”, Pacific J. Math., 15 (1965), 1221–1237 | DOI | MR | Zbl

[18] F. Gross, “Solvable groups admitting a fixed-point-free automorphism of prime power order”, Proc. Amer. Math. Soc., 17 (1966), 1440–1446 | DOI | MR | Zbl

[19] P. Hall, G. Higman, “The $p$-length of a $p$-soluble group and reduction theorems for Burnside's problem”, Proc. London Math. Soc. (3), 6 (1956), 1–42 | DOI | MR | Zbl

[20] B. Hartley, “A general Brauer–Fowler theorem and centralizers in locally finite groups”, Pacific J. Math., 152 (1992), 101–117 | DOI | MR

[21] B. Hartley, I. M. Isaacs, “On characters and fixed points of coprime operator groups”, J. Algebra, 131 (1990), 342–358 | DOI | MR | Zbl

[22] B. Hartley, T. Meixner, “Finite soluble groups containing an element of prime order whose centralizer is small”, Arch. Math. (Basel), 36 (1981), 211–213 | DOI | MR | Zbl

[23] B. Hartley, V. Turau, “Finite soluble groups admitting an automorphism of prime power order with few fixed points”, Math. Proc. Cambridge Philos. Soc., 102 (1987), 431–441 | DOI | MR | Zbl

[24] G. Higman, “Groups and rings which have automorphisms without non-trivial fixed elements”, J. London Math. Soc. (2), 32 (1957), 321–334 | DOI | MR | Zbl

[25] A. H. M. Hoare, “A note on $2$-soluble groups”, J. London Math. Soc., 35 (1960), 193–199 | DOI | MR | Zbl

[26] F. Hoffman, “Nilpotent height of finite groups admitting fixed-point-free automorphisms”, Math. Z., 85 (1964), 260–267 | DOI | MR | Zbl

[27] E. I. Khukhro, “Finite $p$-groups admitting an automorphism of order $p$ with a small number of fixed points”, Math. Notes, 38:5 (1986), 867–870 | DOI | MR | Zbl

[28] E. I. Khukhro, “Groups and Lie rings admitting an almost regular automorphism of prime order”, Math. USSR Sbornik, 71:9 (1992), 51–63 | DOI | MR | Zbl

[29] E. I. Khukhro, “Groups with an automorphism of prime order that is almost regular in the sense of rank”, J. London Math. Soc., 77 (2008), 130–148 | DOI | MR | Zbl

[30] E. I. Khukhro, Ant. A. Klyachko, N. Yu. Makarenko, Yu. B. Melnikova, “Automorphism invariance and identities”, Bull. London Math. Soc., 41 (2009), 804–816 | DOI | MR | Zbl

[31] E. I. Khukhro, N. Yu. Makarenko, “Large characteristic subgroups satisfying multilinear commutator identities”, J. London Math. Soc., 75:3 (2007), 635–646 | DOI | MR | Zbl

[32] E. I. Khukhro, N. Yu. Makarenko, “Characteristic nilpotent subgroups of bounded co-rank and automorphically invariant nilpotent ideals of bounded codimension in Lie algebras”, Quart. J. Math., 58 (2007), 229–247 | DOI | MR | Zbl

[33] E. I. Khukhro, V. D. Mazurov, “Finite groups with an automorphism of prime order whose centralizer has small rank”, J. Algebra, 301 (2006), 474–492 | DOI | MR | Zbl

[34] E. I. Khukhro, V. D. Mazurov, “Automorphisms with centralizers of small rank”, Groups St. Andrews 2005, v. 2, London Math. Soc. Lecture Note Ser., 340, Cambridge Univ. Press, Cambridge, 2007, 564–585 | MR | Zbl

[35] E. I. Khukhro, P. Shumyatsky, Word-values and pronilpotent subgroups in profinite groups, in preparation, 2013

[36] A. A. Klyachko, Yu. B. Mel'nikova, “A short proof of the Makarenko–Khukhro theorem on large characteristic subgroups with identity”, Sb. Math., 200:5 (2009), 661–664 | DOI | MR | Zbl

[37] A. A. Klyachko, M. V. Milentyeva, Large and symmetric: the Khukhro–Makarenko theorem on laws – without laws, Preprint, 2013, arXiv: 1309.0571

[38] Transl. II Ser. Amer. Math. Soc., 36 (1964), 63–99 | MR | Zbl | Zbl

[39] Unsolved Problems in Group Theory, The Kourovka Notebook no. 17, Institute of Mathematics, Novosibirsk, 2010

[40] L. G. Kovács, “Groups with regular automorphisms of order four”, Math. Z., 75 (1960/61), 277–294 | DOI | MR

[41] V. A. Kreknin, “The solubility of Lie algebras with regular automorphisms of finite period”, Sov. Math. Dokl., 4 (1963), 683–685 | MR | Zbl

[42] V. A. Kreknin, A. I. Kostrikin, “Lie algebras with regular automorphisms”, Sov. Math. Dokl., 4 (1963), 355–358 | MR | Zbl

[43] M. Liebeck, “The classification of finite simple Moufang loops”, Math. Proc. Cambridge Philos. Soc., 102:1 (1987), 33–47 | DOI | MR | Zbl

[44] W. Magnus, “A connection between the Baker–Hausdorff formula and a problem of Burnside”, Ann. of Math. (2), 52 (1950), 111–126 ; “Errata”, Ann. of Math. (2), 57 (1953), 606 | DOI | MR | Zbl | DOI | MR | Zbl

[45] N. Yu. Makarenko, “Finite $2$-groups admitting an automorphism of order 4 with few fixed points”, Algebra and Logic, 32:4 (1993), 215–230 | DOI | MR | Zbl

[46] N. Yu. Makarenko, “Finite 2-groups with automorphisms of order 4”, Algebra Logic, 40:1 (2001), 47–54 | DOI | MR | Zbl

[47] N. Yu. Makarenko, “A nilpotent ideal in the Lie rings with an automorphism of prime order”, Siberian Math. J., 46:6 (2005), 1097–1107 | DOI | MR | Zbl

[48] N. Yu. Makarenko, E. I. Khukhro, “Almost solubility of Lie algebras with almost regular automorphisms”, J. Algebra, 277 (2004), 370–407 | DOI | MR | Zbl

[49] N. Yu. Makarenko, E. I. Khukhro, “Finite groups with an almost regular automorphism of order four”, Algebra Logic, 45:5 (2006), 326–343 | DOI | MR | Zbl

[50] N. Yu. Makarenko, P. Shumyatsky, “Characteristic subgroups in locally finite groups”, J. Algebra, 352 (2012), 354–360 | DOI | MR | Zbl

[51] V. D. Mazurov, “Finite groups with solvable subgroups of $2$-length one”, Algebra Logic, 11 (1972), 243–259 | DOI | MR | Zbl

[52] G. P. Nagy, “Burnside problems for Moufang and Bol loops of small exponent”, Acta Sci. Math. (Szeged), 67 (2001), 687–696 | MR | Zbl

[53] N. Nikolov, D. Segal, “On finitely generated profinite groups. I. Strong completeness and uniform bounds”, Ann. of Math. (2), 165 (2007), 171–238 | DOI | MR | Zbl

[54] M. R. Pettet, “Automorphisms and Fitting factors of finite groups”, J. Algebra, 72 (1981), 404–412 | DOI | MR | Zbl

[55] P. Rowley, “Finite groups admitting a fixed-point-free automorphism group”, J. Algebra, 174 (1995), 724–727 | DOI | MR | Zbl

[56] I. N. Sanov, “On a certain system of relations in periodic groups with exponent a power of a prime number”, Izv. Akad. Nauk SSSR Ser. Mat., 15:6 (1951), 477–502 (in Russian) | MR | Zbl

[57] D. Segal, “Closed subgroups of profinite groups”, Proc. London Math. Soc. (3), 81 (2000), 29–54 | DOI | MR | Zbl

[58] E. Shult, “On groups admitting fixed point free Abelian operator groups”, Illinois J. Math., 9 (1965), 701–720 | MR | Zbl

[59] P. Shumyatsky, “On groups with commutators of bounded order”, Proc. Amer. Math. Soc., 127 (1999), 2583–2586 | DOI | MR | Zbl

[60] P. Shumyatsky, “Multilinear commutators in residually finite groups”, Israel J. Math., 189 (2012), 207–224 | DOI | MR | Zbl

[61] V. P. Shunkov, “On periodic groups with an almost regular involution”, Algebra Logic, 11:4 (1972), 260–272 | DOI | MR | Zbl

[62] J. Thompson, “Finite groups with fixed-point-free automorphosms of prime order”, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 578–581 | DOI | MR | Zbl

[63] J. Thompson, “Normal $p$-complements for finite groups”, Math. Z., 72 (1960), 332–354 | DOI | MR | Zbl

[64] J. Thompson, “Automorphisms of solvable groups”, J. Algebra, 1 (1964), 259–267 | DOI | MR | Zbl

[65] A. Turull, “Fitting height of groups and of fixed points”, J. Algebra, 86 (1984), 555–566 | DOI | MR | Zbl

[66] A. Turull, “Character theory and length problems”, Finite and locally finite groups (Istanbul, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 471, Kluwer Acad. Publ., Dordrecht, 1995, 377–400 | MR | Zbl

[67] Y. M. Wang, Z. M. Chen, “Solubility of finite groups admitting a coprime order operator group”, Boll. Un. Mat. Ital. A (7), 7:3 (1993), 325–331 | MR | Zbl

[68] J. Wilson, “On the structure of compact torsion groups”, Monatsh. Math., 96 (1983), 57–66 | DOI | MR | Zbl

[69] E. I. Zelmanov, “On some problems of the theory of groups and Lie algebras”, Math. USSR Sbornik, 66:1 (1990), 159–168 | DOI | MR | Zbl

[70] E. I. Zelmanov, “A solution of the Restricted Burnside Problem for groups of odd exponent”, Math. USSR Izvestiya, 36:1 (1991), 41–60 | DOI | MR | Zbl

[71] E. I. Zelmanov, “A solution of the Restricted Burnside Problem for 2-groups”, Math. USSR Sbornik, 72:2 (1992), 543–565 | DOI | MR | Zbl

[72] E. I. Zelmanov, “On periodic compact groups”, Israel J. Math., 77:1–2 (1992), 83–95 | DOI | MR | Zbl

[73] E. I. Zelmanov, “Lie ring methods in the theory of nilpotent groups”, Proc. Groups' 93/St. Andrews, v. 2, London Math. Soc. Lecture Note Ser., 212, Cambridge Univ. Press, 1995, 567–585 | MR | Zbl