Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_4_a11, author = {Vitaly A. Roman'kov}, title = {The linearity problem for the unitriangular automorphism groups of free groups}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {516--520}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/} }
TY - JOUR AU - Vitaly A. Roman'kov TI - The linearity problem for the unitriangular automorphism groups of free groups JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 516 EP - 520 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/ LA - en ID - JSFU_2013_6_4_a11 ER -
%0 Journal Article %A Vitaly A. Roman'kov %T The linearity problem for the unitriangular automorphism groups of free groups %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 516-520 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/ %G en %F JSFU_2013_6_4_a11
Vitaly A. Roman'kov. The linearity problem for the unitriangular automorphism groups of free groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 516-520. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/
[1] S. Yu. Erofeev, V. A. Roman'kov, “On the groups of unitriangular automorphisms of relatively free groups”, Siberian Math. J., 53:5 (2012), 792–799 | DOI | MR | Zbl
[2] J. L. Dyer, E. Formanek, E. K. Grossman, “On the linearity of automorphism groups of free groups”, Arch. Math., 38 (1982), 404–409 | DOI | MR | Zbl
[3] D. Krammer, “The braid group $B_4$ is linear”, Invent. Math., 142 (2000), 451–486 | DOI | MR | Zbl
[4] S. Bigelow, “Braid groups are linear”, J. Amer. Math. Soc., 14:2 (2001), 471–486 | DOI | MR | Zbl
[5] D. Krammer, “Braid groups are linear”, Ann. Math., 155 (2002), 131–156 | DOI | MR | Zbl
[6] E. Formanek, C. Procesi, “The automorphism group of a free group is not linear”, J. Algebra, 149 (1992), 494–499 | DOI | MR | Zbl
[7] L. Auslender, G. Baumslag, “Automorphism groups of finitely generated nilpotent groups”, Bull. Amer. Math. Soc., 73 (1967), 716–717 | DOI | MR
[8] A. Yu. Olshanskii, “Linear automorphism groups of relatively free groups”, Turk. J. Math., 31:1 (2007), 105–111 | MR | Zbl
[9] V. A. Roman'kov, I. V. Chirkov, M. A. Shevelin, “Nonlinearity of the automorphism groups of some free algebras”, Siberian Math. J., 45:5 (2004), 974–977 | DOI | MR | Zbl
[10] Yu. V. Sosnovskii, “The hypercentral structure of the group of unitriangular automorphisms of a polynomial algebra”, Siberian Math. J., 48:3 (2007), 555–558 | DOI | MR | Zbl
[11] A. N. Kabanov, “The hypercentral structure of the group of unitriangular automorphisms of a free metabelian Lie algebra”, Siberian Math. J., 50:2 (2001), 261–264 | DOI | MR
[12] V. G. Bardakov, M. V. Neshadim, Yu. V. Sosnovskii, “Groups of triangular automorphisms of a free associative algebra and a polynomial algebra”, J. Algebra, 362 (2012), 201–220 | DOI | MR | Zbl
[13] V. A. Roman'kov, “The local structure of groups of triangular automorphisms of relatively free algebras”, Algebra and Logic, 51:5 (2012), 425–434 | DOI | MR | Zbl
[14] T. E. Brendle, H. Hamidi-Tehrani, “On the linearity problem for mapping class groups”, Algebraic and Geometric Topology, 1 (2001), 445-468 | DOI | MR | Zbl
[15] V. G. Bardakov, “Linear representations of the group of conjugating automorphisms and the braid groups of some manifolds”, Siberian Math. J., 46:1 (2005), 13–23 | DOI | MR | Zbl
[16] W. Dison, T. Riley, Hydra groups, 14 May 2010, arXiv: 1002.1945v2[math.GR]
[17] G. Baumslag, R. Mikhailov, Residual properties of groups defined by basic commutators, 28 Aug. 2013, arXiv: 1301.4629v2[math.GR]
[18] B. Bajorska, O. Macedonska, W. Tomaszewski, “A defining property of virtually nilpotent groups”, Publ. Math. Debrecen, 81 (2012), 415–420 | DOI | MR