The linearity problem for the unitriangular automorphism groups of free groups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 516-520

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the unitriangular automorphism group of a free group of rank $n$ has a faithful representation by matrices over a field, or in other words, it is a linear group, if and only if $n\leq3$. Thus, we have completed a description of relatively free groups with linear the unitriangular automorphism groups. This description was initiated by Erofeev and the author in [1], where proper varieties of groups have been considered.
Keywords: free group, unitriangular automorphism, linearity.
@article{JSFU_2013_6_4_a11,
     author = {Vitaly A. Roman'kov},
     title = {The linearity problem for the unitriangular automorphism groups of free groups},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {516--520},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/}
}
TY  - JOUR
AU  - Vitaly A. Roman'kov
TI  - The linearity problem for the unitriangular automorphism groups of free groups
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 516
EP  - 520
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/
LA  - en
ID  - JSFU_2013_6_4_a11
ER  - 
%0 Journal Article
%A Vitaly A. Roman'kov
%T The linearity problem for the unitriangular automorphism groups of free groups
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 516-520
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/
%G en
%F JSFU_2013_6_4_a11
Vitaly A. Roman'kov. The linearity problem for the unitriangular automorphism groups of free groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 516-520. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/