The linearity problem for the unitriangular automorphism groups of free groups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 516-520
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the unitriangular automorphism group of a free group of rank $n$ has a faithful representation by matrices over a field, or in other words, it is a linear group, if and only if $n\leq3$. Thus, we have completed a description of relatively free groups with linear the unitriangular automorphism groups. This description was initiated by Erofeev and the author in [1], where proper varieties of groups have been considered.
Keywords:
free group, unitriangular automorphism, linearity.
@article{JSFU_2013_6_4_a11,
author = {Vitaly A. Roman'kov},
title = {The linearity problem for the unitriangular automorphism groups of free groups},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {516--520},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/}
}
TY - JOUR AU - Vitaly A. Roman'kov TI - The linearity problem for the unitriangular automorphism groups of free groups JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 516 EP - 520 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/ LA - en ID - JSFU_2013_6_4_a11 ER -
%0 Journal Article %A Vitaly A. Roman'kov %T The linearity problem for the unitriangular automorphism groups of free groups %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 516-520 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/ %G en %F JSFU_2013_6_4_a11
Vitaly A. Roman'kov. The linearity problem for the unitriangular automorphism groups of free groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 516-520. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a11/