Optimization problems with random data
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 506-515.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses a new approach to optimization problems with random input parameters, which is defined as a random programming. This approach uses a numerical probability analysis and allows us to construct the set of solutions of the optimization problem based on the joint probability density function.
Keywords: numerical probabilistic analysis, random programming, mathematical programming.
@article{JSFU_2013_6_4_a10,
     author = {Olga A. Popova},
     title = {Optimization problems with random data},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {506--515},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a10/}
}
TY  - JOUR
AU  - Olga A. Popova
TI  - Optimization problems with random data
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 506
EP  - 515
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a10/
LA  - en
ID  - JSFU_2013_6_4_a10
ER  - 
%0 Journal Article
%A Olga A. Popova
%T Optimization problems with random data
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 506-515
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a10/
%G en
%F JSFU_2013_6_4_a10
Olga A. Popova. Optimization problems with random data. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 506-515. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a10/

[1] B. Dobronets, Interval Mathematic, KSU, Krasnoyarsk, 2004 (in Russian)

[2] B. S. Dobronets, A. M. Krantsevich, N. M. Krantsevich, “Software implementation of numerical operations on random variables”, Journal of Siberian Federal University. Mathematics Physics, 6:2 (2013), 168–173

[3] B. S. Dobronets, O. A. Popova, “Numerical operations on random variables and their application”, Journal of Siberian Federal University. Mathematics Physics, 4:2 (2011), 229–239 (in Russian)

[4] B. S. Dobronets, O. A. Popova, “Elements of numerical probability analysis”, SibGAU Vestnik, 42:2 (2012), 19–23 (in Russian)

[5] B. S. Dobronets, O. A. Popova, “Numerical probabilistic analysis for the study of systems with uncertainty”, Zhurnal Kontrolya i Komp'yuternyh Nauk, 21:4 (2012), 39–46 (in Russian)

[6] M. Fiedler, J. Nedoma, J. Ramìik, J. Rohn, K. Zimmermann, Linear Optimization Problems with Inexact Data, Springer Science+Business Media, New York, 2006 | MR

[7] B. Liu, Theory and Practice of Uncertain Programming, 2nd Edition, Springer-Verlag, Berlin, 2009

[8] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992 | MR | Zbl

[9] H. Schjaer-Jacobsen, “Representation and calculation of economic uncertainties: Intervals, fuzzy numbers, and probabilities”, Int. J. Production Economics, 78 (2002), 91–99 | DOI

[10] A. Shapiro, D. Dentcheva, A. Ruszczynski, Lectures on Stochastic Programming: Modeling and Theory, SIAM, Philadelphia, 2009 | MR | Zbl

[11] C. W. Ueberhuber, Numerical Computation, v. 2, Methods, Software, and Analysis, Springer-Verlag, Berlin, 1997 | Zbl

[12] F. P. Vasil'ev, Numerical methods for solving extremal problems, Nauka, Moscow, 1988 (in Russian) | MR