Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_4_a1, author = {Leonid A. Bokut and Yuqun Chen}, title = {Gr\"obner--Shirshov bases and {PBW} theorems}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {417--427}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a1/} }
TY - JOUR AU - Leonid A. Bokut AU - Yuqun Chen TI - Gr\"obner--Shirshov bases and PBW theorems JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 417 EP - 427 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a1/ LA - en ID - JSFU_2013_6_4_a1 ER -
Leonid A. Bokut; Yuqun Chen. Gr\"obner--Shirshov bases and PBW theorems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 417-427. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a1/
[1] G. M. Bergman, “The diamond lemma for ring theory”, Adv. in Math., 29 (1978), 178–218 | DOI | MR
[2] G. M. Bergman, Privite communication, 2013
[3] L. A. Bokut, “On one property of the Boone group”, Algebra Logika, 5:5 (1966), 5–23 (in Russian) | MR | Zbl
[4] L. A. Bokut, “On the Novikov groups”, Algebra Logika, 6:1 (1967), 25–38 (in Russian) | MR | Zbl
[5] L. A. Bokut, “Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras”, Izv. Akad. Nauk SSSR Ser. Mat., 36:6 (1972), 1173–1219 (in Russian) | MR | Zbl
[6] L. A. Bokut, “Imbeddings into simple associative algebras”, Algebra Logika, 15:2 (1976), 117–142 (in Russian) | DOI | MR | Zbl
[7] L. A. Bokut, “Gröbner–Shirshov bases for braid groups in Artin–Garside generators”, J. Symbolic Computation, 43 (2008), 397–405 | DOI | MR | Zbl
[8] L. A. Bokut, “Gröbner–Shirshov bases for the braid group in the Birman–Ko–Lee generators”, J. Algebra, 321 (2009), 361–379 | DOI | MR
[9] L. A. Bokut, V. V. Chainikov, K. P. Shum, “Markov and Artin normal form theorem for braid groups”, Commun. Algebra, 35 (2007), 2105–2115 | DOI | MR | Zbl
[10] L. A. Bokut, V. Chainikov, “Gröbner–Shirshov bases of Adjan extension of the Novikov group”, Discrete Mathematics, 308 (2008), 4916–4930 | DOI | MR | Zbl
[11] L. A. Bokut, Y. Q. Chen, “Gröbner–Shirshov bases for Lie algebras: after A. I. Shirshov”, Southeast Asian Bull. Math., 31 (2007), 1057–1076 | MR | Zbl
[12] L. A. Bokut, Y. Q. Chen, “Gröbner–Shirshov bases: some new results”, Advance in Algebra and Combinatorics, Proceedings of the Second International Congress in Algebra and Combinatorics, eds. K. P. Shum, E. Zelmanov, Jiping Zhang, Li Shangzhi, World Scientific, 2008, 35–56 | MR | Zbl
[13] L. A. Bokut, Y. Q. Chen, Y. S. Chen, “Composition-Diamond lemma for tensor product of free algebras”, J. Algebra, 323 (2010), 2520–2537 | DOI | MR | Zbl
[14] L. A. Bokut, Y. Q. Chen, Y. S. Chen, “Gröbner–Shirshov bases for Lie algebras over a commutative algebra”, J. Algebra, 337 (2011), 82–102 | DOI | MR | Zbl
[15] L. A. Bokut, Y. Q. Chen, W. P. Chen, J. Li, Gröbner–Shirshov bases for plactic monoids, Preprint, 2012
[16] L. A. Bokut, Y. Q. Chen, X. M. Deng, “Gröbner–Shirshov bases for Rota–Baxter algebras”, Siberian Math. J., 51:6 (2010), 978–988 | DOI | MR | Zbl
[17] L. A. Bokut, Y. Q. Chen, J. P. Huang, “Gröbner–Shirshov bases for $L$-algebras”, Internat. J. Algebra Comput., 23 (2013), 547–571 | DOI | MR | Zbl
[18] L. A. Bokut, Y. Q. Chen, Y. Li, “Gröbner–Shirshov bases for Vinberg–Koszul–Gerstenhaber right-symmetric algebras”, J. Math. Sci., 166 (2010), 603–612 | DOI | MR
[19] L. A. Bokut, Y. Q. Chen, Y. Li, “Anti-commutative Gröbner–Shirshov basis of a free Lie algebra”, Science in China Series A: Mathematics, 52 (2009), 244–253 | DOI | MR | Zbl
[20] L. A. Bokut, Y. Q. Chen, Y. Li, “Gröbner–Shirshov bases for categories”, Nankai Series in Pure, Applied Mathematics and Theoretical Physical, Operads and Universal Algebra, 9 (2012), 1–23 | MR
[21] L. A. Bokut, Y. Q. Chen, Y. Li, “Lyndon–Shirshov words and anti-commutative algebras”, J. Algebra, 378 (2013), 173–183 | DOI | MR | Zbl
[22] L. A. Bokut, Y. Q. Chen, C. H. Liu, “Gröbner–Shirshov bases for dialgebras”, Internat. J. Algebra Comput., 20 (2010), 391–415 | DOI | MR | Zbl
[23] L. A. Bokut, Y. Q. Chen, Q. H. Mo, “Gröbner–Shirshov bases and embeddings of algebras”, Internat. J. Algebra Comput., 20 (2010), 875–900 | DOI | MR | Zbl
[24] L. A. Bokut, Y. Q. Chen, Q. H. Mo, “Gröbner–Shirshov bases for semirings”, J. Algebra, 378 (2013), 47–63 | MR
[25] L. A. Bokut, Y. Q. Chen, J. J. Qiu, “Gröbner–Shirshov bases for associative algebras with multiple operations and free Rota–Baxter algebras”, J. Pure Applied Algebra, 214 (2010), 89–100 | DOI | MR | Zbl
[26] L. A. Bokut, Y. Q. Chen, K. P. Shum, “Some new results on Gröbner–Shirshov bases”, Proceedings of International Conference on Algebra 2010, Advances in Algebraic Structures, 2012, 53–102 | MR | Zbl
[27] L. A. Bokut, Y. Q. Chen, G. L. Zhang, Composition-Diamond lemma for associative $n$-conformal algebras, arXiv: 0903.0892
[28] L. A. Bokut, Y. Q. Chen, X. G. Zhao, “Gröbner–Shirshov beses for free inverse semigroups”, Internat. J. Algebra Comput., 19 (2009), 129–143 | DOI | MR | Zbl
[29] L. A. Bokut, Y. Fong, W.-F. Ke, “Composition-Diamond lemma for associative conformal algebras”, J. Algebra, 272 (2004), 739–774 | DOI | MR | Zbl
[30] L. A. Bokut, Y. Fong, W.-F. Ke, P. S. Kolesnikov, “Gröbner and Gröbner–Shirshov bases in algebra and conformal algebras”, Fundamental and Applied Mathematics, 6:3 (2000), 669–706 | MR | Zbl
[31] L. A. Bokut, S.-J. Kang, K.-H. Lee, P. Malcolmson, “Gröbner–Shirshov bases for Lie superalgebras and their universal enveloping algebras”, J. Algebra, 217 (1999), 461–495 | DOI | MR | Zbl
[32] L. A. Bokut, P. S. Kolesnikov, “Gröbner–Shirshov bases: from their incipiency to the present”, J. Math. Sci., 116 (2003), 2894–2916 | DOI | MR
[33] L. A. Bokut, P. S. Kolesnikov, “Gröbner–Shirshov bases, conformal algebras and pseudo-algebras”, J. Math. Sci., 131 (2005), 5962–6003 | DOI | MR | Zbl
[34] L. A. Bokut, P. Malcolmson, “Gröbner–Shirshov bases for Lie and associative algebras”, Collection of Abstracts, ICAC'97, Hong Kong, 1997, 139–142
[35] L. A. Bokut, P. Malcolmson, “Gröbner–Shirshov bases for relations of a Lie algebra and its enveloping algebra”, Algebras and combinatorics, Papers from the international congress, ICAC'97 (Hong Kong, August 1997), eds. Shum Kar-Ping et al., Springer, Singapore, 1999, 47–54 | MR | Zbl
[36] L. A. Bokut, K. P. Shum, “Relative Gröbner–Shirshov bases for algebras and groups”, St. Petersbg. Math. J., 19:6 (2008), 867–881 | DOI | MR | Zbl
[37] B. Buchberger, An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal, Ph. D. thesis, University of Innsbruck, Austria, 1965 | Zbl
[38] B. Buchberger, “An algorithmical criteria for the solvability of algebraic systems of equations”, Aequationes Math., 4 (1970), 374–383 | DOI | MR | Zbl
[39] P. Cartier, “Remarques sur le théorème de Birkhoff–Witt”, Annali della Scuola Norm. Sup. di Pisa, Série III, 12 (1958), 1–4 | MR | Zbl
[40] Y. Q. Chen, “Gröbner–Shirshov basis for Schreier extensions of groups”, Commun. Algebra, 36 (2008), 1609–1625 | DOI | MR | Zbl
[41] Y. Q. Chen, “Gröbner–Shirshov basis for extensions of algebras”, Algebra Colloq., 16 (2009), 283–292 | MR | Zbl
[42] Y. S. Chen, Y. Q. Chen, “Gröbner–Shirshov bases for matabelian Lie algebras”, J. Algebra, 358 (2012), 143–161 | DOI | MR | Zbl
[43] Y. Q. Chen, Y. S. Chen, Y. Li, “Composition-Diamond lemma for differential algebras”, The Arabian Journal for Science and Engineering, 34 (2009), 135–145 | MR
[44] Y. Q. Chen, W. S. Chen, R. I. Luo, “Word problem for Novikov's and Boone's group via Gröbner–Shirshov bases”, Southeast Asian Bull. Math., 32 (2008), 863–877 | MR | Zbl
[45] Y. Q. Chen, Y. S. Chen, C. Y. Zhong, “Composition-Diamond lemma for modules”, Czechoslovak Math. J., 60 (2010), 59–76 | DOI | MR | Zbl
[46] Y. Q. Chen, Y. Li, “Some remarks for the Akivis algebras and the Pre-Lie algebras”, Czechoslovak Math. J., 61:136 (2011), 707–720 | DOI | MR | Zbl
[47] Y. Q. Chen, Y. Li, Q. Y. Tang, Gröbner–Shirshov bases for some Lie algebras, Preprint, 2012
[48] Y. Q. Chen, Q. H. Mo, “Artin-Markov normal form for braid group”, Southeast Asian Bull. Math., 33 (2009), 403–419 | MR | Zbl
[49] Y. Q. Chen, Q. H. Mo, “Embedding dendriform algebra into its universal enveloping Rota–Baxter algebra”, Proc. Am. Math. Soc., 139 (2011), 4207–4216 | DOI | MR | Zbl
[50] Y. Q. Chen, Q. H. Mo, “Gröbner–Shirshov bases for free partially commutative Lie algebras”, Commun. Algebra, 41 (2013), 3753–3761 | DOI | Zbl
[51] Y. Q. Chen, J. J. Qiu, “Gröbner–Shirshov basis for the Chinese monoid”, Journal of Algebra and its Applications, 7 (2008), 623–628 | DOI | MR | Zbl
[52] Y. Q. Chen, H. S. Shao, K. P. Shum, “On Rosso–Yamane theorem on PBW basis of $U_q(A_N)$”, CUBO A Mathematical Journal, 10 (2008), 171–194 | MR | Zbl
[53] Y. Q. Chen, M. M. Yang, A Gröbner–Shirshov basis for free idempoten semigroup, Preprint, 2012
[54] Y. Q. Chen, C. Y. Zhong, “Gröbner–Shirshov basis for HNN extensions of groups and for the alternative group”, Commun. Algebra, 36 (2008), 94–10 | DOI
[55] Y. Q. Chen, C. Y. Zhong, “Gröbner–Shirshov basis for some one-relator groups”, Algebra Colloq., 19 (2011), 99–116 | MR
[56] Y. Q. Chen, C. Y. Zhong, “Gröbner–Shirshov bases for braid groups in Adyan-Thurston generators”, Algebra Colloq., 20 (2013), 309–318 | MR | Zbl
[57] P. M. Cohn, “A remark on the Birkhoff-Witt theorem”, Journal London Math. Soc., 38 (1963), 197–203 | DOI | MR | Zbl
[58] Marshall Hall (Jr.), The Theory of Groups, The Macmillan Company, 1959 | MR
[59] E. N. Poroshenko, “Bases for partially commutative Lie algebras”, Algebra Logika, 50:5 (2011), 405–417 (in Russian) | DOI | MR | Zbl
[60] J. J. Qiu, Y. Q. Chen, “Composition-Diamond lemma for $\lambda$-differential associative algebras with multiple operators”, Journal of Algebra and its Applications, 9 (2010), 223–239 | DOI | MR | Zbl
[61] J. J. Qiu, “Gröbner–Shirshov bases for commutative algebras with multiple operators and free commutative Rota–Baxter algebras”, Asian-European Jour. Math. (to appear)
[62] A. I. Shirshov, “On the representation of Lie rings in associative rings”, Uspekhi Mat. Nauk N.S., 8:5(57) (1953), 173–175 (in Russian) | MR | Zbl
[63] SIGSAM Bull., 33 (1999), 3–6 | DOI | MR | Zbl | Zbl
[64] Bokut L. A., Latyshev V., Shestakov I., Zelmanov E., Bremner Trs. M., Kochetov M. (Eds.), Selected works of A. I. Shirshov, Birkhäuse, Basel–Boston–Berlin, 2009