Subharmonic functions on complex hyperplanes of $\mathbb C^n$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 409-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper is considered a class of $m-wsh$ functions defined with relation $dd^cu\wedge(dd^c|z|^2)^{n-m}\geqslant0$, and is studied some properties of polar sets for this class.
Keywords: $m-wsh$ function, $mw$-polar set, $mw$-regular domain.
Mots-clés : $mw$-convex domain
@article{JSFU_2013_6_4_a0,
     author = {Bakhrom I. Abdullaev},
     title = {Subharmonic functions on complex hyperplanes of $\mathbb C^n$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {409--416},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a0/}
}
TY  - JOUR
AU  - Bakhrom I. Abdullaev
TI  - Subharmonic functions on complex hyperplanes of $\mathbb C^n$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 409
EP  - 416
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a0/
LA  - en
ID  - JSFU_2013_6_4_a0
ER  - 
%0 Journal Article
%A Bakhrom I. Abdullaev
%T Subharmonic functions on complex hyperplanes of $\mathbb C^n$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 409-416
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a0/
%G en
%F JSFU_2013_6_4_a0
Bakhrom I. Abdullaev. Subharmonic functions on complex hyperplanes of $\mathbb C^n$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 4, pp. 409-416. http://geodesic.mathdoc.fr/item/JSFU_2013_6_4_a0/

[1] E. M. Chirka, Complex analytic sets, Nauka, Moscow, 1985 (in Russian) | MR | Zbl

[2] J. P. Demailly, “Measures de Monge-Ampere et measures Plurisousharmoniques”, Math. Z., 194 (1987), 519–564 | DOI | MR | Zbl

[3] M. Klimek, Pluripotential Theory, Clarendon Press, Oxford–New York–Tokyo, 1991 | MR | Zbl

[4] P. Lelong, Fonctions plurisousharmoniques et formes differentielles positives, Dunod, Paris; Gordon Breach, New York, 1968 | MR | Zbl

[5] W. K. Hayman, P. B. Kennedy, Subharmonic functions, London Math. Society Monographs, 1, Academic Press, 1976

[6] A. Sadullaev, “Plurisubharmonic measure and capacity on complex manifolds”, Russian Math. Surveys, 36:4 (1981), 61–119 | DOI | MR | Zbl

[7] S. Kołodziej, The complex Monge-Ampére equation and pluripotential theory, Mem. Amer. Math. Soc., 178, no. 840, 2005, 64 pp. | MR