Power Series Nonextendable Across the Boundary of their Convergence Domain
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 329-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we construct a new power series in a single variable nonextendable through the boundary circle of the convergence disk. This series refines the known Fredholm`s example. Using this series we construct a double power series that does not admit an analytic continuation across the boundary of its convergence domain.
Keywords: power series, analitic continuation, infinitely differentiate, Dirichlet series.
@article{JSFU_2013_6_3_a5,
     author = {Aleksandr D. Mkrtchyan},
     title = {Power {Series} {Nonextendable} {Across} the {Boundary} of their {Convergence} {Domain}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {329--335},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a5/}
}
TY  - JOUR
AU  - Aleksandr D. Mkrtchyan
TI  - Power Series Nonextendable Across the Boundary of their Convergence Domain
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 329
EP  - 335
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a5/
LA  - en
ID  - JSFU_2013_6_3_a5
ER  - 
%0 Journal Article
%A Aleksandr D. Mkrtchyan
%T Power Series Nonextendable Across the Boundary of their Convergence Domain
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 329-335
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a5/
%G en
%F JSFU_2013_6_3_a5
Aleksandr D. Mkrtchyan. Power Series Nonextendable Across the Boundary of their Convergence Domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 329-335. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a5/

[1] G. Szegö, “Über Potenzreihen mit endlich vielen verschiedenen Koeffizienten”, Sitzgsber. prueß. Akad. Wiss., Math.-phys. Kl., 1922, 88–91 | Zbl

[2] G. Pólya, “Über Potenzreihen mit ganzzalhigen koeffizienten”, Math. Ann., 77 (1916), 497–513 | DOI | MR | Zbl

[3] L. Bieberbach, Analytische Fortsetzung, Springer-Verlag, Berlin, 1955 | MR

[4] G. Mittag-Leffler, “Sur une transcendente remarquable trouvée par M. Fredholm. Extrait d`une letter de M. Mittag-Leffler à M. Poincaré”, Acta mathematica, 15:21 (1891) | MR

[5] E. Fabry, “Sur les points singuliers d'une fonction donnee par son developpement de Taylor”, Ann. ec. norm. sup., 13 (1896), 367–399 | MR | Zbl

[6] A. F. Leont'ev, Entire functions, exponential series, Nauka, M., 1983 (in Russian) | MR

[7] M. Passare, D. Pochekutov, A. Tsikh, “Amoebas of complex hypersurfaces in statistical thermodynamics”, Math. Phys., Analysis and Geometry, 16:3 (2013), 89–108 | DOI | MR