Power Series Nonextendable Across the Boundary of their Convergence Domain
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 329-335

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we construct a new power series in a single variable nonextendable through the boundary circle of the convergence disk. This series refines the known Fredholm`s example. Using this series we construct a double power series that does not admit an analytic continuation across the boundary of its convergence domain.
Keywords: power series, analitic continuation, infinitely differentiate, Dirichlet series.
@article{JSFU_2013_6_3_a5,
     author = {Aleksandr D. Mkrtchyan},
     title = {Power {Series} {Nonextendable} {Across} the {Boundary} of their {Convergence} {Domain}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {329--335},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a5/}
}
TY  - JOUR
AU  - Aleksandr D. Mkrtchyan
TI  - Power Series Nonextendable Across the Boundary of their Convergence Domain
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 329
EP  - 335
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a5/
LA  - en
ID  - JSFU_2013_6_3_a5
ER  - 
%0 Journal Article
%A Aleksandr D. Mkrtchyan
%T Power Series Nonextendable Across the Boundary of their Convergence Domain
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 329-335
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a5/
%G en
%F JSFU_2013_6_3_a5
Aleksandr D. Mkrtchyan. Power Series Nonextendable Across the Boundary of their Convergence Domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 329-335. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a5/