Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_3_a1, author = {Evgueniya Dyachenko and Nikolai Tarkhanov}, title = {Degeneration of {Boundary} {Layer} at {Singular} {Points}}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {283--297}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/} }
TY - JOUR AU - Evgueniya Dyachenko AU - Nikolai Tarkhanov TI - Degeneration of Boundary Layer at Singular Points JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 283 EP - 297 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/ LA - en ID - JSFU_2013_6_3_a1 ER -
%0 Journal Article %A Evgueniya Dyachenko %A Nikolai Tarkhanov %T Degeneration of Boundary Layer at Singular Points %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 283-297 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/ %G en %F JSFU_2013_6_3_a1
Evgueniya Dyachenko; Nikolai Tarkhanov. Degeneration of Boundary Layer at Singular Points. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 283-297. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/
[1] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Uspekhi Mat. Nauk, 19:3 (1964), 53–161 (in Russian) | MR | Zbl
[2] A. Antoniouk, N. Tarkhanov, The Dirichlet problem for the heat equation in domains with cuspidal points on the boundary, Operator Theory: Advances and Applications, Birkhäuser, Basel et al., 2012
[3] V. N. Aref'ev, L. A. Bagirov, “Asymptotic behavior of solutions of the Dirichlet problem for a parabolic equation in domains with singularities”, Mat. Zam., 59:1 (1996), 12–23 (in Russian) | DOI | MR
[4] G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9 (1908), 219–231 | DOI | MR
[5] L. Boutet de Monvel, “Boundary problems for pseudo-differential operators”, Acta Math., 126:1–2 (1971), 11–51 | MR | Zbl
[6] A. S. Demidov, “Asymptotic behaviour of the solution of a boundary value problem for elliptic pseudodifferential equations with a small parameter multiplying the highest operator”, Trans. Moscow Math. Soc., 32 (1975), 119–146 | MR | Zbl
[7] G. I. Eskin, “Asymptotics of solutions of elliptic pseudodifferential equations with a small parameter”, Soviet Math. Dokl., 14:4 (1973), 1080–1084 | MR | Zbl
[8] G. I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Amer. Math. Soc., Providence, RI, 1980 | MR
[9] L. S. Frank, Spaces and Singular Perturbations on Manifolds without Boundary, North Holland, Amsterdam, 1990 | MR
[10] K. Friedrichs, “Asymptotic phenomena in mathematical physics”, Bull. Amer. Math. Soc., 61 (1955), 485–504 | DOI | MR | Zbl
[11] M. Gevrey, “Sur les équations partielles du type parabolique”, J. Math. pure appl. Paris, 9 (1913), 305–471; 10 (1914), 105–148 | Zbl
[12] W. M. Greenlee, “Rate of convergence in singular perturbations”, Ann. Inst. Fourier (Grenoble), 18:2 (1968), 135–191 | DOI | MR | Zbl
[13] D. Huet, “Phénomènes de perturbation singulière dans les problèmes aux limites”, Ann. Inst. Fourier (Grenoble), 11 (1961), 385–475 | DOI | MR
[14] A. M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Amer. Math. Soc., Providence, RI, 1992 | MR
[15] A. I. Karol', “Operator-valued pseudodifferential operators and the resolvent of a degenerate elliptic operator”, Mat. Sb., 121(163):4 (1983), 562–575 | MR
[16] J. Kevorkian, J. D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, Berlin–New York, 1981 | MR | Zbl
[17] V. A. Kondrat'ev, “Boundary problems for parabolic equations in closed domains”, Trans. Moscow Math. Soc., 15 (1966), 400–451 | MR
[18] E. F. Mishchenko, N. Kh. Rozov, Differential Equations with Small Parameter and Relaxation Oscillations, Plenum Press, New York, 1980 | MR | Zbl
[19] S. A. Nazarov, “Vishik–Lyusternik method for elliptic boundary value problems in domains with conical points. I–III”, Sib. Mat. Zh., 22:4 (1981), 142–163 ; 22:5 (1981), 132–152 ; 25:6 (1984), 106–115 (in Russian) | MR | Zbl | MR | Zbl | MR | Zbl
[20] A. L. Pereira, M. C. Pereira, “An eigenvalue problem for the biharmonic operator on $\mathbb{Z}_2$-symmetric regions”, J. Lond. Math. Soc., 77:2 (2008), 424–442 | DOI | MR | Zbl
[21] H. Poincaré, “Sur les intégrales irrégulières des équations linéaires”, Acta Math., 8 (1886), 295–344 | DOI | MR
[22] L. Prandtl, “Über Flüssigkeitsbewegung bei kleiner Reibung”, Verhandl. III. Int. Math.-Kongresses, Teubner, Leipzig, 1905, 484–491
[23] V. Rabinovich, B.-W. Schulze, N. Tarkhanov, “A calculus of boundary value problems in domains with non-Lipschitz singular points”, Math. Nachr., 215 (2000), 115–160 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[24] I. B. Simonenko, “A new general method for investigating linear operator equations of the singular integral operator type. I; II”, Izv. Akad. Nauk SSSR, Ser. Mat., 29 (1965), 567–586 ; 757–782 (in Russian) | MR | Zbl | MR
[25] M. I. Vishik, L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Uspekhi Mat. Nauk, 12:5 (77) (1957), 3–122 (in Russian) | MR | Zbl
[26] L. R. Volevich, “The Vishik–Lyusternik method in elliptic problems with small parameter”, Trans. Moscow Math. Soc., 67 (2006), 87–125 | DOI | MR | Zbl
[27] W. Wasow, Asymptotic expansions for ordinary differential equations, Wiley, 1966 | MR