Degeneration of Boundary Layer at Singular Points
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 283-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Dirichlet problem in a bounded plane domain for the heat equation with small parameter multiplying the derivative in $t$. The behaviour of solution at characteristic points of the boundary is of special interest. The behaviour is well understood if a characteristic line is tangent to the boundary with contact degree at least $2$. We allow the boundary to not only have contact of degree less than $2$ with a characteristic line but also a cuspidal singularity at a characteristic point. We construct an asymptotic solution of the problem near the characteristic point to describe how the boundary layer degenerates.
Keywords: Heat equation, Dirichlet problem, characteristic points, boundary layer.
@article{JSFU_2013_6_3_a1,
     author = {Evgueniya Dyachenko and Nikolai Tarkhanov},
     title = {Degeneration of {Boundary} {Layer} at {Singular} {Points}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {283--297},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/}
}
TY  - JOUR
AU  - Evgueniya Dyachenko
AU  - Nikolai Tarkhanov
TI  - Degeneration of Boundary Layer at Singular Points
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 283
EP  - 297
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/
LA  - en
ID  - JSFU_2013_6_3_a1
ER  - 
%0 Journal Article
%A Evgueniya Dyachenko
%A Nikolai Tarkhanov
%T Degeneration of Boundary Layer at Singular Points
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 283-297
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/
%G en
%F JSFU_2013_6_3_a1
Evgueniya Dyachenko; Nikolai Tarkhanov. Degeneration of Boundary Layer at Singular Points. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 283-297. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/

[1] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Uspekhi Mat. Nauk, 19:3 (1964), 53–161 (in Russian) | MR | Zbl

[2] A. Antoniouk, N. Tarkhanov, The Dirichlet problem for the heat equation in domains with cuspidal points on the boundary, Operator Theory: Advances and Applications, Birkhäuser, Basel et al., 2012

[3] V. N. Aref'ev, L. A. Bagirov, “Asymptotic behavior of solutions of the Dirichlet problem for a parabolic equation in domains with singularities”, Mat. Zam., 59:1 (1996), 12–23 (in Russian) | DOI | MR

[4] G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9 (1908), 219–231 | DOI | MR

[5] L. Boutet de Monvel, “Boundary problems for pseudo-differential operators”, Acta Math., 126:1–2 (1971), 11–51 | MR | Zbl

[6] A. S. Demidov, “Asymptotic behaviour of the solution of a boundary value problem for elliptic pseudodifferential equations with a small parameter multiplying the highest operator”, Trans. Moscow Math. Soc., 32 (1975), 119–146 | MR | Zbl

[7] G. I. Eskin, “Asymptotics of solutions of elliptic pseudodifferential equations with a small parameter”, Soviet Math. Dokl., 14:4 (1973), 1080–1084 | MR | Zbl

[8] G. I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Amer. Math. Soc., Providence, RI, 1980 | MR

[9] L. S. Frank, Spaces and Singular Perturbations on Manifolds without Boundary, North Holland, Amsterdam, 1990 | MR

[10] K. Friedrichs, “Asymptotic phenomena in mathematical physics”, Bull. Amer. Math. Soc., 61 (1955), 485–504 | DOI | MR | Zbl

[11] M. Gevrey, “Sur les équations partielles du type parabolique”, J. Math. pure appl. Paris, 9 (1913), 305–471; 10 (1914), 105–148 | Zbl

[12] W. M. Greenlee, “Rate of convergence in singular perturbations”, Ann. Inst. Fourier (Grenoble), 18:2 (1968), 135–191 | DOI | MR | Zbl

[13] D. Huet, “Phénomènes de perturbation singulière dans les problèmes aux limites”, Ann. Inst. Fourier (Grenoble), 11 (1961), 385–475 | DOI | MR

[14] A. M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Amer. Math. Soc., Providence, RI, 1992 | MR

[15] A. I. Karol', “Operator-valued pseudodifferential operators and the resolvent of a degenerate elliptic operator”, Mat. Sb., 121(163):4 (1983), 562–575 | MR

[16] J. Kevorkian, J. D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, Berlin–New York, 1981 | MR | Zbl

[17] V. A. Kondrat'ev, “Boundary problems for parabolic equations in closed domains”, Trans. Moscow Math. Soc., 15 (1966), 400–451 | MR

[18] E. F. Mishchenko, N. Kh. Rozov, Differential Equations with Small Parameter and Relaxation Oscillations, Plenum Press, New York, 1980 | MR | Zbl

[19] S. A. Nazarov, “Vishik–Lyusternik method for elliptic boundary value problems in domains with conical points. I–III”, Sib. Mat. Zh., 22:4 (1981), 142–163 ; 22:5 (1981), 132–152 ; 25:6 (1984), 106–115 (in Russian) | MR | Zbl | MR | Zbl | MR | Zbl

[20] A. L. Pereira, M. C. Pereira, “An eigenvalue problem for the biharmonic operator on $\mathbb{Z}_2$-symmetric regions”, J. Lond. Math. Soc., 77:2 (2008), 424–442 | DOI | MR | Zbl

[21] H. Poincaré, “Sur les intégrales irrégulières des équations linéaires”, Acta Math., 8 (1886), 295–344 | DOI | MR

[22] L. Prandtl, “Über Flüssigkeitsbewegung bei kleiner Reibung”, Verhandl. III. Int. Math.-Kongresses, Teubner, Leipzig, 1905, 484–491

[23] V. Rabinovich, B.-W. Schulze, N. Tarkhanov, “A calculus of boundary value problems in domains with non-Lipschitz singular points”, Math. Nachr., 215 (2000), 115–160 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[24] I. B. Simonenko, “A new general method for investigating linear operator equations of the singular integral operator type. I; II”, Izv. Akad. Nauk SSSR, Ser. Mat., 29 (1965), 567–586 ; 757–782 (in Russian) | MR | Zbl | MR

[25] M. I. Vishik, L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Uspekhi Mat. Nauk, 12:5 (77) (1957), 3–122 (in Russian) | MR | Zbl

[26] L. R. Volevich, “The Vishik–Lyusternik method in elliptic problems with small parameter”, Trans. Moscow Math. Soc., 67 (2006), 87–125 | DOI | MR | Zbl

[27] W. Wasow, Asymptotic expansions for ordinary differential equations, Wiley, 1966 | MR