Degeneration of Boundary Layer at Singular Points
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 283-297
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Dirichlet problem in a bounded plane domain for the heat equation with small parameter multiplying the derivative in $t$. The behaviour of solution at characteristic points of the boundary is of special interest. The behaviour is well understood if a characteristic line is tangent to the boundary with contact degree at least $2$. We allow the boundary to not only have contact of degree less than $2$ with a characteristic line but also a cuspidal singularity at a characteristic point. We construct an asymptotic solution of the problem near the characteristic point to describe how the boundary layer degenerates.
Keywords:
Heat equation, Dirichlet problem, characteristic points, boundary layer.
@article{JSFU_2013_6_3_a1,
author = {Evgueniya Dyachenko and Nikolai Tarkhanov},
title = {Degeneration of {Boundary} {Layer} at {Singular} {Points}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {283--297},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/}
}
TY - JOUR AU - Evgueniya Dyachenko AU - Nikolai Tarkhanov TI - Degeneration of Boundary Layer at Singular Points JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 283 EP - 297 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/ LA - en ID - JSFU_2013_6_3_a1 ER -
%0 Journal Article %A Evgueniya Dyachenko %A Nikolai Tarkhanov %T Degeneration of Boundary Layer at Singular Points %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 283-297 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/ %G en %F JSFU_2013_6_3_a1
Evgueniya Dyachenko; Nikolai Tarkhanov. Degeneration of Boundary Layer at Singular Points. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 3, pp. 283-297. http://geodesic.mathdoc.fr/item/JSFU_2013_6_3_a1/