Decidability of multi-modal logic $LTK$ of linear time and knowledge
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 220-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates modal (temporal-model) logics based at a semantic approach with models combining knowledge and time. We introduce multi-modal logics $LTK_r$ and $LTK_{ir}$ containing modalities for knowledge and time as the sets of all $LTK_r$-valid, and $LTK_{ir}$-valid formulae for a class of special $LTK_r$- frames, $LTK_{ir}$-frames, respectively. The main results of this paper are theorems stating that $LTK_r$ and $LTK_{ir}$ are decidable; we also give an explicit solving algorithm.
Keywords: multi-modal logic, temporal logic, epistemic logic, decidability, effective finite model property.
@article{JSFU_2013_6_2_a8,
     author = {Alexandra N. Lukyanchuk},
     title = {Decidability of multi-modal logic $LTK$ of linear time and knowledge},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {220--226},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a8/}
}
TY  - JOUR
AU  - Alexandra N. Lukyanchuk
TI  - Decidability of multi-modal logic $LTK$ of linear time and knowledge
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 220
EP  - 226
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a8/
LA  - en
ID  - JSFU_2013_6_2_a8
ER  - 
%0 Journal Article
%A Alexandra N. Lukyanchuk
%T Decidability of multi-modal logic $LTK$ of linear time and knowledge
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 220-226
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a8/
%G en
%F JSFU_2013_6_2_a8
Alexandra N. Lukyanchuk. Decidability of multi-modal logic $LTK$ of linear time and knowledge. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 220-226. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a8/

[1] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning About Knowledge, MIT Press, Cambridge, Massachussets, 1995 | MR | Zbl

[2] R. Bull, K. Segerberg, “Basic Modal Logic”, Handbook of Philosophical Logic, v. II, eds. D. Gabbay, F. Guenthner, Reidel, Dordrecht, The Netherlands, 1984, 1–88 | DOI | MR | Zbl

[3] J. Y. Halpern, R. Van Der Meyden, M. Y. Vardi, “Complete Axiomatization for Reasoning About Knowledge and Time”, SIAM Journal on Computing, 33:3 (2004), 674–703 | DOI | MR | Zbl

[4] R. H. Thomason, “Combination of tense and modality”, Handbook of Philosophical Logic, v. II, eds. D. Gabbay, F. Guenthner, Reidel, Dordrecht, The Netherlands, 1984, 135–165 | DOI | MR | Zbl

[5] E. Calardo, V. V. Rybakov, “Combining time and knowledge, semantic approach”, Bulletin of the Section of Logic, 34:1 (2005), 13–21 | MR | Zbl

[6] E. Calardo, “Admissible inference rules in the linear logic of knowledge and time LTK”, Logic Journal of the IGPL, 14:1 (2006), 15–34 | DOI | MR | Zbl

[7] E. Calardo, V. V. Rybakov, “An axiomatisation for the multi-modal logic of knowledge and linear time LTK”, Logic Journal of the IGPL, 15:3 (2007), 239–254 | DOI | MR | Zbl

[8] V. V. Rybakov, Admissibility of Logical Inference Rules, Elsevier Science, Amsterdam, 1997 | MR | Zbl

[9] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon press, Oxford, 1997 | MR | Zbl