The Newton polytope of the optimal differential operator for an algebraic curve
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 200-210

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the linear differential operator with polynomial coefficients whose space of holomorphic solutions is spanned by all the branches of a function defined by a generic algebraic curve. The main result is a description of the coefficients of this operator in terms of their Newton polytopes.
Keywords: algebraic function, minimal differential operator, Newton polytope.
@article{JSFU_2013_6_2_a6,
     author = {Vitaly A. Krasikov and Timur M. Sadykov},
     title = {The {Newton} polytope of the optimal differential operator for an algebraic curve},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {200--210},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/}
}
TY  - JOUR
AU  - Vitaly A. Krasikov
AU  - Timur M. Sadykov
TI  - The Newton polytope of the optimal differential operator for an algebraic curve
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 200
EP  - 210
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/
LA  - en
ID  - JSFU_2013_6_2_a6
ER  - 
%0 Journal Article
%A Vitaly A. Krasikov
%A Timur M. Sadykov
%T The Newton polytope of the optimal differential operator for an algebraic curve
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 200-210
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/
%G en
%F JSFU_2013_6_2_a6
Vitaly A. Krasikov; Timur M. Sadykov. The Newton polytope of the optimal differential operator for an algebraic curve. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 200-210. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/