Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_2_a6, author = {Vitaly A. Krasikov and Timur M. Sadykov}, title = {The {Newton} polytope of the optimal differential operator for an algebraic curve}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {200--210}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/} }
TY - JOUR AU - Vitaly A. Krasikov AU - Timur M. Sadykov TI - The Newton polytope of the optimal differential operator for an algebraic curve JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 200 EP - 210 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/ LA - en ID - JSFU_2013_6_2_a6 ER -
%0 Journal Article %A Vitaly A. Krasikov %A Timur M. Sadykov %T The Newton polytope of the optimal differential operator for an algebraic curve %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 200-210 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/ %G en %F JSFU_2013_6_2_a6
Vitaly A. Krasikov; Timur M. Sadykov. The Newton polytope of the optimal differential operator for an algebraic curve. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 200-210. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/
[1] D. V. Anosov, A. A. Bolibruch, The Riemann–Hilbert problem, Aspects of Mathematics, E22, Friedr. Vieweg Sohn, 1994 | DOI | MR
[2] J.-E. Björk, Rings of Differential Operators, North. Holland Mathematical Library, 1979 | MR
[3] J.-E. Björk, Analytic $\mathcal D$-Modules and Applications, Kluwer Academic Publishers, 1993 | MR
[4] A. Bostan, F. Chyzak, B. Salvy, G. Lecerf, E. Schost, “Differential equations for algebraic functions”, Proceedings of ISSAC, Waterloo, Ontario, Canada, 2007, 25–32 | MR | Zbl
[5] J. J. Cannon, W. Bosma (Eds.), Handbook of Magma Functions, Edition 2.13, 2006, 4350 pp.
[6] G. Carrá Ferro, “Generalized differential resultant systems of algebraic ODEs and differential elimination theory”, Differential Equations with Symbolic Computation, Trends in Mathematics, Birkhäuser, 2006, 327–341 | MR
[7] E. Cattani, C. D'Andrea, A. Dickenstein, “The $\mathcal A$-hypergeometric system associated with a monomial curve”, Duke Math. J., 99 (1999), 179–207 | DOI | MR | Zbl
[8] J. Cockle, “On transcendental and algebraic solution”, Philosophical Magazine, XXI (1861), 379–383
[9] O. Cormier, M. F. Singer, B. M. Trager, F. Ulmer, “Linear differential operators for polynomial equations”, J. Symbolic Computation, 34 (2002), 355–398 | DOI | MR | Zbl
[10] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, “Hypergeometric functions and toric varieties”, Funct. Anal. Appl., 23:2 (1989), 94–106 | DOI | MR | Zbl
[11] F. Lárusson, T. M. Sadykov, “Dessins d'enfants and differential equations”, St. Petersburg Math. J., 19:6 (2007), 184–199 | MR
[12] K. Mayr, “Über die Lösung algebraischer Gleichungssysteme durch hypergeometrische Funktionen”, Monatshefte für Mathematik und Physik, 45 (1937), 280–313 | DOI | MR | Zbl
[13] Hj. Mellin, “Résolution de l'équation algébrique générale à l'aide de la fonction $\Gamma$”, C. R. Acad. Sc., 172 (1921), 658–661 | Zbl
[14] M. Passare, T. M. Sadykov, A. K. Tsikh, “Nonconfluent hypergeometric functions in several variables and their singularities”, Compos. Math., 141:3 (2005), 787–810 | DOI | MR | Zbl
[15] M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Springer Verlag, Berlin–Heidelberg, 2000 | MR
[16] B. Sturmfels, “Solving algebraic equations in terms of $\mathcal A$-hypergeometric series”, Discrete Math., 210:1–3 (2000), 171–181 | DOI | MR | Zbl
[17] S. P. Tsarev, “Factorization of overdetermined systems of linear partial differential equations with finite-dimensional solution space”, Proceedings of the 4th international workshop on Computer Algebra in Scientific Computing, Springer Verlag, 2001, 529–539 | MR | Zbl
[18] H. Wilf, D. Zeilberger, “An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities”, Invent. Math., 108 (1992), 575–633 | DOI | MR
[19] D. Zeilberger, “A holonomic systems approach to special functions identities”, J. of Computational and Applied Math., 32 (1990), 321–368 | DOI | MR | Zbl