The Newton polytope of the optimal differential operator for an algebraic curve
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 200-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the linear differential operator with polynomial coefficients whose space of holomorphic solutions is spanned by all the branches of a function defined by a generic algebraic curve. The main result is a description of the coefficients of this operator in terms of their Newton polytopes.
Keywords: algebraic function, minimal differential operator, Newton polytope.
@article{JSFU_2013_6_2_a6,
     author = {Vitaly A. Krasikov and Timur M. Sadykov},
     title = {The {Newton} polytope of the optimal differential operator for an algebraic curve},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {200--210},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/}
}
TY  - JOUR
AU  - Vitaly A. Krasikov
AU  - Timur M. Sadykov
TI  - The Newton polytope of the optimal differential operator for an algebraic curve
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 200
EP  - 210
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/
LA  - en
ID  - JSFU_2013_6_2_a6
ER  - 
%0 Journal Article
%A Vitaly A. Krasikov
%A Timur M. Sadykov
%T The Newton polytope of the optimal differential operator for an algebraic curve
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 200-210
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/
%G en
%F JSFU_2013_6_2_a6
Vitaly A. Krasikov; Timur M. Sadykov. The Newton polytope of the optimal differential operator for an algebraic curve. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 200-210. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/

[1] D. V. Anosov, A. A. Bolibruch, The Riemann–Hilbert problem, Aspects of Mathematics, E22, Friedr. Vieweg Sohn, 1994 | DOI | MR

[2] J.-E. Björk, Rings of Differential Operators, North. Holland Mathematical Library, 1979 | MR

[3] J.-E. Björk, Analytic $\mathcal D$-Modules and Applications, Kluwer Academic Publishers, 1993 | MR

[4] A. Bostan, F. Chyzak, B. Salvy, G. Lecerf, E. Schost, “Differential equations for algebraic functions”, Proceedings of ISSAC, Waterloo, Ontario, Canada, 2007, 25–32 | MR | Zbl

[5] J. J. Cannon, W. Bosma (Eds.), Handbook of Magma Functions, Edition 2.13, 2006, 4350 pp.

[6] G. Carrá Ferro, “Generalized differential resultant systems of algebraic ODEs and differential elimination theory”, Differential Equations with Symbolic Computation, Trends in Mathematics, Birkhäuser, 2006, 327–341 | MR

[7] E. Cattani, C. D'Andrea, A. Dickenstein, “The $\mathcal A$-hypergeometric system associated with a monomial curve”, Duke Math. J., 99 (1999), 179–207 | DOI | MR | Zbl

[8] J. Cockle, “On transcendental and algebraic solution”, Philosophical Magazine, XXI (1861), 379–383

[9] O. Cormier, M. F. Singer, B. M. Trager, F. Ulmer, “Linear differential operators for polynomial equations”, J. Symbolic Computation, 34 (2002), 355–398 | DOI | MR | Zbl

[10] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, “Hypergeometric functions and toric varieties”, Funct. Anal. Appl., 23:2 (1989), 94–106 | DOI | MR | Zbl

[11] F. Lárusson, T. M. Sadykov, “Dessins d'enfants and differential equations”, St. Petersburg Math. J., 19:6 (2007), 184–199 | MR

[12] K. Mayr, “Über die Lösung algebraischer Gleichungssysteme durch hypergeometrische Funktionen”, Monatshefte für Mathematik und Physik, 45 (1937), 280–313 | DOI | MR | Zbl

[13] Hj. Mellin, “Résolution de l'équation algébrique générale à l'aide de la fonction $\Gamma$”, C. R. Acad. Sc., 172 (1921), 658–661 | Zbl

[14] M. Passare, T. M. Sadykov, A. K. Tsikh, “Nonconfluent hypergeometric functions in several variables and their singularities”, Compos. Math., 141:3 (2005), 787–810 | DOI | MR | Zbl

[15] M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Springer Verlag, Berlin–Heidelberg, 2000 | MR

[16] B. Sturmfels, “Solving algebraic equations in terms of $\mathcal A$-hypergeometric series”, Discrete Math., 210:1–3 (2000), 171–181 | DOI | MR | Zbl

[17] S. P. Tsarev, “Factorization of overdetermined systems of linear partial differential equations with finite-dimensional solution space”, Proceedings of the 4th international workshop on Computer Algebra in Scientific Computing, Springer Verlag, 2001, 529–539 | MR | Zbl

[18] H. Wilf, D. Zeilberger, “An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities”, Invent. Math., 108 (1992), 575–633 | DOI | MR

[19] D. Zeilberger, “A holonomic systems approach to special functions identities”, J. of Computational and Applied Math., 32 (1990), 321–368 | DOI | MR | Zbl