The Newton polytope of the optimal differential operator for an algebraic curve
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 200-210
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the linear differential operator with polynomial coefficients whose space of holomorphic solutions is spanned by all the branches of a function defined by a generic algebraic curve. The main result is a description of the coefficients of this operator in terms of their Newton polytopes.
Keywords:
algebraic function, minimal differential operator, Newton polytope.
@article{JSFU_2013_6_2_a6,
author = {Vitaly A. Krasikov and Timur M. Sadykov},
title = {The {Newton} polytope of the optimal differential operator for an algebraic curve},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {200--210},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/}
}
TY - JOUR AU - Vitaly A. Krasikov AU - Timur M. Sadykov TI - The Newton polytope of the optimal differential operator for an algebraic curve JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 200 EP - 210 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/ LA - en ID - JSFU_2013_6_2_a6 ER -
%0 Journal Article %A Vitaly A. Krasikov %A Timur M. Sadykov %T The Newton polytope of the optimal differential operator for an algebraic curve %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 200-210 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/ %G en %F JSFU_2013_6_2_a6
Vitaly A. Krasikov; Timur M. Sadykov. The Newton polytope of the optimal differential operator for an algebraic curve. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 200-210. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a6/