Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_2_a2, author = {Mersaid Aripov and Shakhlo A. Sadullaeva}, title = {To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {157--167}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a2/} }
TY - JOUR AU - Mersaid Aripov AU - Shakhlo A. Sadullaeva TI - To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 157 EP - 167 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a2/ LA - en ID - JSFU_2013_6_2_a2 ER -
%0 Journal Article %A Mersaid Aripov %A Shakhlo A. Sadullaeva %T To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 157-167 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a2/ %G en %F JSFU_2013_6_2_a2
Mersaid Aripov; Shakhlo A. Sadullaeva. To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 157-167. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a2/
[1] A. A. Samarskii, V. A. Galaktionov, S. P. Kurduomov, A. P. Mikhajlov, Blow-up in quasilinear parabolic equations, Nauka, M., 1987 (in Russian)
[2] G. I. Barenblatt, J. L. Vazquez, “A new free boundary problem for unsteady flows in porous media”, Euro Journal Applied Mathematics, 9 (1998), 37–54 | DOI | MR | Zbl
[3] M. Bertsch, R. Kersner, L. A. Pelletier, “Sur le comportement de la frontiere lifre dans une equation en theorie de la filtration”, C. R. Acad. Sci. Paris, 295:1 (1982), 63–66 | MR | Zbl
[4] B. H. Fujita, “On the blowing up of solutions to the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109–124 | MR | Zbl
[5] B. H. Gilding, L. A. Pelletier, “On a class of similarity of the porous media equation 2”, J. Math. Anal. And Appl., 570 (1977), 522–538 | DOI | MR
[6] V. A. Galaktionov, “On conditions for non-existing in the whole and localization of solutions of the Cauchy problem for a class of non-linear parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 23:6 (1983), 1341–1354 | MR | Zbl
[7] R. Kersner, “On the behavior when growths to infinity of generalized solutions of the generate quasilinear parabolic equations”, Acta Math. Acad. Sci. Hungaricae, 34 (1979), 157–163 | DOI | MR | Zbl
[8] M. Aripov, Standard Equation's Methods for Solutions to Nonlinear problems, Monograph, FAN, Tashkent, 1988 | MR | Zbl
[9] M. Aripov, “Approximate Self-similar Approach for Solving Quasilinear Parabolic Equation”, Experimentation, Modeling and Computation in Flow, Turbulence and Combustion, v. 2, Wiley, 1997, 19–26 | Zbl
[10] M. Aripov, “Asymptotes of Solutions of the non-Newton Polytrophic Filtration Equations”, ZAMM, 80, Sup. 3 (2000), 767–768
[11] S. N. Dimova, M. S. Kastchiev, M. G. Koleva, D. P. Vasileva, “Numerical analysis of the blow-up regimes of combustion of two-component nonlinear heat-conducting medium”, JVM and MF, 35 (1995), 303–3191 | MR
[12] H. L. Vasces, V. A. Galaktionov, “Asymptotical behavior of solutions of the nonlinear equation of diffusion-absorption at a critical value of parameter”, Dokl. Akad. Nauk SSR, 314:3 (1990), 530–534 | MR
[13] B. F. Knerr, “The behavior of the support of solutions of the equation of nonlinear heat conduction with absorption in one dimension”, Trans. of Amer. Math. Soc., 249 (1979), 409–424 | DOI | MR | Zbl