To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 157-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of solutions of self-similar and approximately self-similar system of the reaction-diffusion with double nonlinearity are investigated. The influence of numerical parameters to an evolution of the studied process is established. The existence of finite and quenching solutions is proved and their asymptotic behavior at the infinity is described. The condition of global solvability to the Cauchy problem, generalizing the results of other authors, is found. Knerr–Kersner type estimate for free boundary is obtained. The results of numerical experiments are enclosed.
Keywords: double nonlinearity, free boundary.
Mots-clés : reaction-diffusion equation
@article{JSFU_2013_6_2_a2,
     author = {Mersaid Aripov and Shakhlo A. Sadullaeva},
     title = {To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {157--167},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a2/}
}
TY  - JOUR
AU  - Mersaid Aripov
AU  - Shakhlo A. Sadullaeva
TI  - To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 157
EP  - 167
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a2/
LA  - en
ID  - JSFU_2013_6_2_a2
ER  - 
%0 Journal Article
%A Mersaid Aripov
%A Shakhlo A. Sadullaeva
%T To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 157-167
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a2/
%G en
%F JSFU_2013_6_2_a2
Mersaid Aripov; Shakhlo A. Sadullaeva. To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 157-167. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a2/

[1] A. A. Samarskii, V. A. Galaktionov, S. P. Kurduomov, A. P. Mikhajlov, Blow-up in quasilinear parabolic equations, Nauka, M., 1987 (in Russian)

[2] G. I. Barenblatt, J. L. Vazquez, “A new free boundary problem for unsteady flows in porous media”, Euro Journal Applied Mathematics, 9 (1998), 37–54 | DOI | MR | Zbl

[3] M. Bertsch, R. Kersner, L. A. Pelletier, “Sur le comportement de la frontiere lifre dans une equation en theorie de la filtration”, C. R. Acad. Sci. Paris, 295:1 (1982), 63–66 | MR | Zbl

[4] B. H. Fujita, “On the blowing up of solutions to the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109–124 | MR | Zbl

[5] B. H. Gilding, L. A. Pelletier, “On a class of similarity of the porous media equation 2”, J. Math. Anal. And Appl., 570 (1977), 522–538 | DOI | MR

[6] V. A. Galaktionov, “On conditions for non-existing in the whole and localization of solutions of the Cauchy problem for a class of non-linear parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 23:6 (1983), 1341–1354 | MR | Zbl

[7] R. Kersner, “On the behavior when growths to infinity of generalized solutions of the generate quasilinear parabolic equations”, Acta Math. Acad. Sci. Hungaricae, 34 (1979), 157–163 | DOI | MR | Zbl

[8] M. Aripov, Standard Equation's Methods for Solutions to Nonlinear problems, Monograph, FAN, Tashkent, 1988 | MR | Zbl

[9] M. Aripov, “Approximate Self-similar Approach for Solving Quasilinear Parabolic Equation”, Experimentation, Modeling and Computation in Flow, Turbulence and Combustion, v. 2, Wiley, 1997, 19–26 | Zbl

[10] M. Aripov, “Asymptotes of Solutions of the non-Newton Polytrophic Filtration Equations”, ZAMM, 80, Sup. 3 (2000), 767–768

[11] S. N. Dimova, M. S. Kastchiev, M. G. Koleva, D. P. Vasileva, “Numerical analysis of the blow-up regimes of combustion of two-component nonlinear heat-conducting medium”, JVM and MF, 35 (1995), 303–3191 | MR

[12] H. L. Vasces, V. A. Galaktionov, “Asymptotical behavior of solutions of the nonlinear equation of diffusion-absorption at a critical value of parameter”, Dokl. Akad. Nauk SSR, 314:3 (1990), 530–534 | MR

[13] B. F. Knerr, “The behavior of the support of solutions of the equation of nonlinear heat conduction with absorption in one dimension”, Trans. of Amer. Math. Soc., 249 (1979), 409–424 | DOI | MR | Zbl