On the spectral properties of a~non-coercive mixed problem associated with $\overline\partial$-operator
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 247-261
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a non-coercive Sturm–Liouville boundary value problem in a bounded domain $D$ of the complex space $\mathbb C^n$ for the perturbed Laplace operator. More precisely, the boundary conditions are of Robin type on $\partial D$ while the first order term of the boundary operator is the complex normal derivative. We prove that the problem is Fredholm one in proper spaces for which an Embedding Theorem is obtained; the theorem gives a correlation with the Sobolev–Slobodetskii spaces. Then, applying the method of weak perturbations of compact self-adjoint operators, we show the completeness of the root functions related to the boundary value problem in the Lebesgue space. For the ball, we present the corresponding eigenvectors as the product of the Bessel functions and the spherical harmonics.
Keywords:
non-coercive problems, the multidimensional Cauchy–Riemann operator, root functions.
Mots-clés : Sturm–Liouville problem
Mots-clés : Sturm–Liouville problem
@article{JSFU_2013_6_2_a11,
author = {Alexander N. Polkovnikov and Aleksander A. Shlapunov},
title = {On the spectral properties of a~non-coercive mixed problem associated with $\overline\partial$-operator},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {247--261},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a11/}
}
TY - JOUR AU - Alexander N. Polkovnikov AU - Aleksander A. Shlapunov TI - On the spectral properties of a~non-coercive mixed problem associated with $\overline\partial$-operator JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 247 EP - 261 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a11/ LA - en ID - JSFU_2013_6_2_a11 ER -
%0 Journal Article %A Alexander N. Polkovnikov %A Aleksander A. Shlapunov %T On the spectral properties of a~non-coercive mixed problem associated with $\overline\partial$-operator %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 247-261 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a11/ %G en %F JSFU_2013_6_2_a11
Alexander N. Polkovnikov; Aleksander A. Shlapunov. On the spectral properties of a~non-coercive mixed problem associated with $\overline\partial$-operator. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 247-261. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a11/