Discrete a~non-linear Hamiltonian dynamics models of hyper elastic deformable media
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 237-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of mathematical modeling of the dynamics of three-dimensional nonlinear deformable hyperelastic media is developed in this paper. The method is based on the Hamiltonian description of discrete classical mechanics and on symplectic integration method for the solution at each instant of time. Comparative results of the solution of a model problem are presented. The results of solution of the topical problem of dynamic behavior of an artificial aortic artery are also presented.
Keywords: deformable media, finite deformation, Hamiltonian description, symplectic integrator, point approximation, mathematical simulation.
@article{JSFU_2013_6_2_a10,
     author = {Vladimir A. Petushkov},
     title = {Discrete a~non-linear {Hamiltonian} dynamics models of hyper elastic deformable media},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a10/}
}
TY  - JOUR
AU  - Vladimir A. Petushkov
TI  - Discrete a~non-linear Hamiltonian dynamics models of hyper elastic deformable media
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 237
EP  - 246
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a10/
LA  - en
ID  - JSFU_2013_6_2_a10
ER  - 
%0 Journal Article
%A Vladimir A. Petushkov
%T Discrete a~non-linear Hamiltonian dynamics models of hyper elastic deformable media
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 237-246
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a10/
%G en
%F JSFU_2013_6_2_a10
Vladimir A. Petushkov. Discrete a~non-linear Hamiltonian dynamics models of hyper elastic deformable media. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 237-246. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a10/

[1] V. I. Arnold, V. V. Kozlov, A. I. Neustadt, “Mathematical aspects of classical and celestial mechanics.”, Dynamic Systems – 3, Results of Science and Tech., Ser. Modern Probl. Math. Fund. Direction, 3, VINITI, 1985, 5–290 (in Russian) | MR | Zbl

[2] B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[3] Marsden J. E., Patrick G. W., Shadwick W. F. (eds.), Integration Algorithms and Classical Mechanics, AMS, Fields Institute Communications, 1996 | Zbl

[4] A. M. Krivtsov, Deformation and fracture of solids with microstructure, PhysMatGis, M., 2007

[5] I. Babuška, U. Banerjee, J. E. Osborn, “Survey of meshless and generalized finite element methods: A unifed approach”, Acta Numerica, 12 (2003), 1–125 | DOI | MR | Zbl

[6] S. Li, W. K. Liu, “Meshfree and particle methods and their applications”, Appl. Mech. Rev., 55 (2002), 1–34 | DOI

[7] P. Lancaster, K. Salkauskas, “Surfaces generated by moving least squares methods”, Mathematics of Computation, 37 (1981), 141–158 | DOI | MR | Zbl

[8] L. A. Taber, Nonlinear theory of elasticity – applications in biomechanics, World Scientific, London, 2004 | Zbl

[9] C. A. Truesdell, A First Course in Rational Continuum Mechanics, 2 ed., Acad. Press, London, 1991 | Zbl

[10] J. C. Simo, N. Tarnow, K. K. Wong, “Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics”, Comput. Methods Appl. Mech. Eng., 100 (1992), 63–116 | DOI | MR | Zbl

[11] M. Kondo, S. Koshizuka, Y. Suzuki, “Application of symplectic scheme to three-dimensional elastic analysis using MPS method”, Trans. of the Japan Society of Mech. Eng., Part A, 72 (2006), 425–431 | DOI

[12] G. Xu, M. Li, A. Gopinath, C. Bajaj, Computational Inversion of Electron Tomography Images Using L2-Gradient Flows, ICES REPORT 11-02, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, 2011

[13] A. I. Nadareyshvili, K. B. Chandran, J. Lu, “Imaged-based explicit Dynamic Simulations in biomechanics”, 10th International Conference on Dynamical Systems. Theory and Application, Lodz, Poland, 2009

[14] G. A. Holzapfel, T. C. Gasser, R. W. Ogden, “A new constitutive framework for arterial wall mechanics and a comparative study of material models”, J. Elasticity, 61 (2001), 1–48 | DOI | MR