Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_2_a10, author = {Vladimir A. Petushkov}, title = {Discrete a~non-linear {Hamiltonian} dynamics models of hyper elastic deformable media}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {237--246}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a10/} }
TY - JOUR AU - Vladimir A. Petushkov TI - Discrete a~non-linear Hamiltonian dynamics models of hyper elastic deformable media JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 237 EP - 246 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a10/ LA - en ID - JSFU_2013_6_2_a10 ER -
%0 Journal Article %A Vladimir A. Petushkov %T Discrete a~non-linear Hamiltonian dynamics models of hyper elastic deformable media %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 237-246 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a10/ %G en %F JSFU_2013_6_2_a10
Vladimir A. Petushkov. Discrete a~non-linear Hamiltonian dynamics models of hyper elastic deformable media. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 2, pp. 237-246. http://geodesic.mathdoc.fr/item/JSFU_2013_6_2_a10/
[1] V. I. Arnold, V. V. Kozlov, A. I. Neustadt, “Mathematical aspects of classical and celestial mechanics.”, Dynamic Systems – 3, Results of Science and Tech., Ser. Modern Probl. Math. Fund. Direction, 3, VINITI, 1985, 5–290 (in Russian) | MR | Zbl
[2] B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[3] Marsden J. E., Patrick G. W., Shadwick W. F. (eds.), Integration Algorithms and Classical Mechanics, AMS, Fields Institute Communications, 1996 | Zbl
[4] A. M. Krivtsov, Deformation and fracture of solids with microstructure, PhysMatGis, M., 2007
[5] I. Babuška, U. Banerjee, J. E. Osborn, “Survey of meshless and generalized finite element methods: A unifed approach”, Acta Numerica, 12 (2003), 1–125 | DOI | MR | Zbl
[6] S. Li, W. K. Liu, “Meshfree and particle methods and their applications”, Appl. Mech. Rev., 55 (2002), 1–34 | DOI
[7] P. Lancaster, K. Salkauskas, “Surfaces generated by moving least squares methods”, Mathematics of Computation, 37 (1981), 141–158 | DOI | MR | Zbl
[8] L. A. Taber, Nonlinear theory of elasticity – applications in biomechanics, World Scientific, London, 2004 | Zbl
[9] C. A. Truesdell, A First Course in Rational Continuum Mechanics, 2 ed., Acad. Press, London, 1991 | Zbl
[10] J. C. Simo, N. Tarnow, K. K. Wong, “Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics”, Comput. Methods Appl. Mech. Eng., 100 (1992), 63–116 | DOI | MR | Zbl
[11] M. Kondo, S. Koshizuka, Y. Suzuki, “Application of symplectic scheme to three-dimensional elastic analysis using MPS method”, Trans. of the Japan Society of Mech. Eng., Part A, 72 (2006), 425–431 | DOI
[12] G. Xu, M. Li, A. Gopinath, C. Bajaj, Computational Inversion of Electron Tomography Images Using L2-Gradient Flows, ICES REPORT 11-02, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, 2011
[13] A. I. Nadareyshvili, K. B. Chandran, J. Lu, “Imaged-based explicit Dynamic Simulations in biomechanics”, 10th International Conference on Dynamical Systems. Theory and Application, Lodz, Poland, 2009
[14] G. A. Holzapfel, T. C. Gasser, R. W. Ogden, “A new constitutive framework for arterial wall mechanics and a comparative study of material models”, J. Elasticity, 61 (2001), 1–48 | DOI | MR