Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_1_a9, author = {Sergey M. Ratseev}, title = {On varieties of {Leibniz--Poisson} algebras with the identity $\{x,y\}\cdot \{z,t\}=0$}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {97--104}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a9/} }
TY - JOUR AU - Sergey M. Ratseev TI - On varieties of Leibniz--Poisson algebras with the identity $\{x,y\}\cdot \{z,t\}=0$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 97 EP - 104 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a9/ LA - en ID - JSFU_2013_6_1_a9 ER -
%0 Journal Article %A Sergey M. Ratseev %T On varieties of Leibniz--Poisson algebras with the identity $\{x,y\}\cdot \{z,t\}=0$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 97-104 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a9/ %G en %F JSFU_2013_6_1_a9
Sergey M. Ratseev. On varieties of Leibniz--Poisson algebras with the identity $\{x,y\}\cdot \{z,t\}=0$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 97-104. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a9/
[1] A. Regev, “Existence of identities in $A\otimes B$”, Israel J. Math., 11 (1972), 131–152 | DOI | MR | Zbl
[2] A. R. Kemer, “T-ideals with power growth of the codimensions are Specht”, Sibirsk. Mat. Zh., 19 (1978), 54–69 (Russian) | MR | Zbl
[3] A. Giambruno, M. V. Zaicev, “On codimension growth of finitely generated associative algebras”, Adv. Math., 140 (1998), 145–155 | DOI | MR | Zbl
[4] A. Giambruno, M. V. Zaicev, “Exponential codimension growth of P. I. algebras: an exact estimate”, Adv. Math., 142 (1999), 221–243 | DOI | MR | Zbl
[5] I. B. Volichenko, “Varieties of Lie algebras with identity $[[X_1,X_2,X_3],[X_4,X_5,X_6]]=0$ over a field of characteristic zero”, Sibirsk. Mat. Zh., 25:3 (1984), 40–54 (Russian) | MR | Zbl
[6] V. M. Petrogradsky, “Growth of polynilpotent varieties of Lie algebras, and rapidly increasing entire functions”, Mat. Sb., 188:6 (1997), 119–138 (in Russian) | DOI | MR | Zbl
[7] S. M. Ratseev, “Commutative Leibniz–Poisson algebras of polynomial growth”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 94:3/1 (2012), 54–65 (in Russian)
[8] VNU Science Press, Utrecht, 1987 | Zbl
[9] V. Drensky, Free algebras and PI-algebras, Graduate Course in Algebra, Springer-Verlag, Singapore, 2000 | MR | Zbl
[10] S. P. Mishchenko, T. V. Skoraya, Yu. Yu. Frolova, “New properties of the variety of Lebniz algebras $_3\mathbf N$, defined by the identity $x(y(zt))\equiv0$”, Algebra and number theory: Modern Problems and Applications, Abstracts of VIII International conference, dedicated to the 190th anniversary of P. L. Chebyshev and 120th anniversary of I. M. Vinogradov, Saratov Gos. Univ., Saratov, 2011, 49–51 (in Russian)
[11] L. E. Abanina, S. P. Mishchenko, “The variety of Leibniz algebras defined by the identity $x(y(zt))\equiv0$”, Serdica Math. J., 29 (2003), 291–300 | MR | Zbl
[12] S. M. Ratseev, “On the property of having a finate basis of some varieties of Lebniz algebras”, Izvestiya Vysshih uchebnyh zavedenii: Povolzhskii region, 33:6 (2007), 12–16 (in Russian)