On varieties of Leibniz--Poisson algebras with the identity $\{x,y\}\cdot \{z,t\}=0$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 97-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be an arbitrary field and let $A$ be a $K$-algebra. The polynomial identities satisfied by $A$ can be measured through the asymptotic behavior of the sequence of codimensions of $A$. We study varieties of Leibniz–Poisson algebras, whose ideals of identities contain the identity $\{x,y\}\cdot \{z,t\}=0$, we study an interrelation between such varieties and varieties of Leibniz algebras. We show that from any Leibniz algebra $L$ one can construct the Leibniz–Poisson algebra $A$ and the properties of $L$ are close to the properties of $A$. We show that if the ideal of identities of a Leibniz–Poisson variety $\mathcal V$ does not contain any Leibniz polynomial identity then $\mathcal V$ has overexponential growth of the codimensions. We construct a variety of Leibniz–Poisson algebras with almost exponential growth.
Keywords: variety of algebras, growth of a variety.
Mots-clés : Poisson algebra, Leibniz–Poisson algebra
@article{JSFU_2013_6_1_a9,
     author = {Sergey M. Ratseev},
     title = {On varieties of {Leibniz--Poisson} algebras with the identity $\{x,y\}\cdot \{z,t\}=0$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {97--104},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a9/}
}
TY  - JOUR
AU  - Sergey M. Ratseev
TI  - On varieties of Leibniz--Poisson algebras with the identity $\{x,y\}\cdot \{z,t\}=0$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 97
EP  - 104
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a9/
LA  - en
ID  - JSFU_2013_6_1_a9
ER  - 
%0 Journal Article
%A Sergey M. Ratseev
%T On varieties of Leibniz--Poisson algebras with the identity $\{x,y\}\cdot \{z,t\}=0$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 97-104
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a9/
%G en
%F JSFU_2013_6_1_a9
Sergey M. Ratseev. On varieties of Leibniz--Poisson algebras with the identity $\{x,y\}\cdot \{z,t\}=0$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 97-104. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a9/

[1] A. Regev, “Existence of identities in $A\otimes B$”, Israel J. Math., 11 (1972), 131–152 | DOI | MR | Zbl

[2] A. R. Kemer, “T-ideals with power growth of the codimensions are Specht”, Sibirsk. Mat. Zh., 19 (1978), 54–69 (Russian) | MR | Zbl

[3] A. Giambruno, M. V. Zaicev, “On codimension growth of finitely generated associative algebras”, Adv. Math., 140 (1998), 145–155 | DOI | MR | Zbl

[4] A. Giambruno, M. V. Zaicev, “Exponential codimension growth of P. I. algebras: an exact estimate”, Adv. Math., 142 (1999), 221–243 | DOI | MR | Zbl

[5] I. B. Volichenko, “Varieties of Lie algebras with identity $[[X_1,X_2,X_3],[X_4,X_5,X_6]]=0$ over a field of characteristic zero”, Sibirsk. Mat. Zh., 25:3 (1984), 40–54 (Russian) | MR | Zbl

[6] V. M. Petrogradsky, “Growth of polynilpotent varieties of Lie algebras, and rapidly increasing entire functions”, Mat. Sb., 188:6 (1997), 119–138 (in Russian) | DOI | MR | Zbl

[7] S. M. Ratseev, “Commutative Leibniz–Poisson algebras of polynomial growth”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 94:3/1 (2012), 54–65 (in Russian)

[8] VNU Science Press, Utrecht, 1987 | Zbl

[9] V. Drensky, Free algebras and PI-algebras, Graduate Course in Algebra, Springer-Verlag, Singapore, 2000 | MR | Zbl

[10] S. P. Mishchenko, T. V. Skoraya, Yu. Yu. Frolova, “New properties of the variety of Lebniz algebras $_3\mathbf N$, defined by the identity $x(y(zt))\equiv0$”, Algebra and number theory: Modern Problems and Applications, Abstracts of VIII International conference, dedicated to the 190th anniversary of P. L. Chebyshev and 120th anniversary of I. M. Vinogradov, Saratov Gos. Univ., Saratov, 2011, 49–51 (in Russian)

[11] L. E. Abanina, S. P. Mishchenko, “The variety of Leibniz algebras defined by the identity $x(y(zt))\equiv0$”, Serdica Math. J., 29 (2003), 291–300 | MR | Zbl

[12] S. M. Ratseev, “On the property of having a finate basis of some varieties of Lebniz algebras”, Izvestiya Vysshih uchebnyh zavedenii: Povolzhskii region, 33:6 (2007), 12–16 (in Russian)