Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_1_a7, author = {Bernd Martin and Dmitry Yu. Pochekutov}, title = {Discriminant and singularities of logarithmic {Gauss} map, examples and application}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {74--85}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a7/} }
TY - JOUR AU - Bernd Martin AU - Dmitry Yu. Pochekutov TI - Discriminant and singularities of logarithmic Gauss map, examples and application JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 74 EP - 85 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a7/ LA - en ID - JSFU_2013_6_1_a7 ER -
%0 Journal Article %A Bernd Martin %A Dmitry Yu. Pochekutov %T Discriminant and singularities of logarithmic Gauss map, examples and application %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 74-85 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a7/ %G en %F JSFU_2013_6_1_a7
Bernd Martin; Dmitry Yu. Pochekutov. Discriminant and singularities of logarithmic Gauss map, examples and application. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 74-85. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a7/
[1] V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Bikhäuser, Boston, 1985 | MR
[2] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-3 – A computer algebra system for polynomial computations, , 2011 http://www.singular.uni-kl.de
[3] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. in Math., 151 (2000), 45–70 | DOI | MR | Zbl
[4] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimentional Determinants, Bikhäuser, Boston, 1994 | MR
[5] I. A. Ikromov, D. Müller, “On adapted coordinate system”, Trans. Amer. Math. Soc., 363 (2011), 2821–2848 | DOI | MR | Zbl
[6] A. G. Khovanskii, “Newton polyhedra and toroidal varieties”, Funct. Anal. Appl., 11:4 (1977), 289–296 | DOI | MR | Zbl
[7] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor”, Invent. Math., 32 (1976), 1–31 | DOI | MR
[8] D. T. Le, “Calculation of Milnor number of isolated singularity of complete intersection”, Funk. Anal. and its Appl., 8:2 (1972), 45–49
[9] J. N. Mather, “Classification of Isolated Hypersurface Singularities by Their Moduli Algebras”, Invet. math., 69 (1982), 243–251 | DOI | MR | Zbl
[10] B. Martin, “Singularities are determined by their cotangent complexe”, Ann. Global Anal. Geom., 3:2 (1985), 197–217 | DOI | MR | Zbl
[11] G. Mikhalkin, “Real algebraic curves, moment map and amoebas”, Ann. of Math., 151:1 (2000), 309–326 | DOI | MR | Zbl
[12] M. Passare, A. K. Tsikh, “Amoebas: their spines and their contours”, Contemporary Math., 377 (2005), 275–288 | DOI | MR | Zbl
[13] H. Rullgård, Topics in geometry, analysis and inverse problems, Ph. D. diss., Stockholm University, 2003
[14] B. Teissier, “The hunting of invariants in the geometry of discriminants”, Real and complexe singularities, Oslo, 1976, 565–678 | MR
[15] A. K. Tsikh, “Conditions for absolute convergence of the Taylor coefficient series of a meromorphic fucntion of two variables”, Math. USSR Sb., 74:2 (1993), 337–360 | DOI | MR | Zbl
[16] A. N. Varchenko, “Newton polyhedra and estimates of oscillating integrals”, Funct. Anal. Appl., 10:3 (1976), 175–196 | DOI | MR | Zbl
[17] K. Wirthmüller, “Singularities Determined by Their Discriminant”, Math. Ann., 252 (1980), 237–245 | DOI | MR
[18] R. Wong, Asymptotic approximations of integrals, SIAM, 2001 | MR | Zbl | Zbl