Discriminant and singularities of logarithmic Gauss map, examples and application
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 74-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of hypersurfaces in a torus leads to the beautiful zoo of amoebas and their contours, whose possible configurations are seen from combinatorical data. There is a deep connection to the logarithmic Gauss map and its critical points. The theory has a lot of applications in many directions. In this report we recall basic notions and results from the theory of amoebas, show some connection to algebraic singularity theory and consider some consequences from the well known classification of singularities to this subject. Moreover, we have tried to compute some examples using the computer algebra system Singular and discuss different possibilities and their effectivity to compute the critical points. Here we meet an essential obstacle: Relevant examples need real or even rational solutions, which are found only by chance. We have tried to unify different views to that subject.
Keywords: singularities, asymptotics, hypersurface amoeba.
Mots-clés : logarithmic Gauss map, discriminant
@article{JSFU_2013_6_1_a7,
     author = {Bernd Martin and Dmitry Yu. Pochekutov},
     title = {Discriminant and singularities of logarithmic {Gauss} map, examples and application},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {74--85},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a7/}
}
TY  - JOUR
AU  - Bernd Martin
AU  - Dmitry Yu. Pochekutov
TI  - Discriminant and singularities of logarithmic Gauss map, examples and application
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 74
EP  - 85
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a7/
LA  - en
ID  - JSFU_2013_6_1_a7
ER  - 
%0 Journal Article
%A Bernd Martin
%A Dmitry Yu. Pochekutov
%T Discriminant and singularities of logarithmic Gauss map, examples and application
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 74-85
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a7/
%G en
%F JSFU_2013_6_1_a7
Bernd Martin; Dmitry Yu. Pochekutov. Discriminant and singularities of logarithmic Gauss map, examples and application. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 74-85. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a7/

[1] V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Bikhäuser, Boston, 1985 | MR

[2] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-3 – A computer algebra system for polynomial computations, , 2011 http://www.singular.uni-kl.de

[3] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. in Math., 151 (2000), 45–70 | DOI | MR | Zbl

[4] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimentional Determinants, Bikhäuser, Boston, 1994 | MR

[5] I. A. Ikromov, D. Müller, “On adapted coordinate system”, Trans. Amer. Math. Soc., 363 (2011), 2821–2848 | DOI | MR | Zbl

[6] A. G. Khovanskii, “Newton polyhedra and toroidal varieties”, Funct. Anal. Appl., 11:4 (1977), 289–296 | DOI | MR | Zbl

[7] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor”, Invent. Math., 32 (1976), 1–31 | DOI | MR

[8] D. T. Le, “Calculation of Milnor number of isolated singularity of complete intersection”, Funk. Anal. and its Appl., 8:2 (1972), 45–49

[9] J. N. Mather, “Classification of Isolated Hypersurface Singularities by Their Moduli Algebras”, Invet. math., 69 (1982), 243–251 | DOI | MR | Zbl

[10] B. Martin, “Singularities are determined by their cotangent complexe”, Ann. Global Anal. Geom., 3:2 (1985), 197–217 | DOI | MR | Zbl

[11] G. Mikhalkin, “Real algebraic curves, moment map and amoebas”, Ann. of Math., 151:1 (2000), 309–326 | DOI | MR | Zbl

[12] M. Passare, A. K. Tsikh, “Amoebas: their spines and their contours”, Contemporary Math., 377 (2005), 275–288 | DOI | MR | Zbl

[13] H. Rullgård, Topics in geometry, analysis and inverse problems, Ph. D. diss., Stockholm University, 2003

[14] B. Teissier, “The hunting of invariants in the geometry of discriminants”, Real and complexe singularities, Oslo, 1976, 565–678 | MR

[15] A. K. Tsikh, “Conditions for absolute convergence of the Taylor coefficient series of a meromorphic fucntion of two variables”, Math. USSR Sb., 74:2 (1993), 337–360 | DOI | MR | Zbl

[16] A. N. Varchenko, “Newton polyhedra and estimates of oscillating integrals”, Funct. Anal. Appl., 10:3 (1976), 175–196 | DOI | MR | Zbl

[17] K. Wirthmüller, “Singularities Determined by Their Discriminant”, Math. Ann., 252 (1980), 237–245 | DOI | MR

[18] R. Wong, Asymptotic approximations of integrals, SIAM, 2001 | MR | Zbl | Zbl