Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_1_a5, author = {Nyurgun P. Lazarev}, title = {An equilibrium problem for the {Timoshenko-type} plate containing a~crack on the boundary of a~rigid inclusion}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {53--62}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a5/} }
TY - JOUR AU - Nyurgun P. Lazarev TI - An equilibrium problem for the Timoshenko-type plate containing a~crack on the boundary of a~rigid inclusion JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 53 EP - 62 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a5/ LA - en ID - JSFU_2013_6_1_a5 ER -
%0 Journal Article %A Nyurgun P. Lazarev %T An equilibrium problem for the Timoshenko-type plate containing a~crack on the boundary of a~rigid inclusion %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 53-62 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a5/ %G en %F JSFU_2013_6_1_a5
Nyurgun P. Lazarev. An equilibrium problem for the Timoshenko-type plate containing a~crack on the boundary of a~rigid inclusion. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a5/
[1] M. Maiti, “On the extension of a crack due to rigid inclusions”, International Journal of Fracture, 15 (1979), 389–393 | DOI
[2] V. I. Mossakovsky, M. T. Rybka, “Generalization of the Griffith–Sneddon criterion for the case of a nonhomogeneous body”, J. Appl. Math. Mech., 28 (1964), 1277–1286 | DOI
[3] Z. M. Xiao, B. J. Chen, “Stress intensity factor for a Griffith crack interacting with a coated inclusion”, International Journal of Fracture, 108 (2001), 193–205 | DOI
[4] F. Erdogan, G. D. Gupta, M. Ratwani, “Interaction between a circular inclusion and an arbitrarily oriented crack”, ASME Journal of Applied Mechanics, 41 (1974), 1007–1013 | DOI | Zbl
[5] G. P. Sendeckyj, “Interaction of cracks with rigid inclusions in longitudinal shear deformation”, International Journal of Fracture Mechanics, 101 (1974), 45–52
[6] G. Leugering, A. M. Khludnev, “On the equilibrium of elastic bodies containing thin rigid inclusions”, Doklady Physics, 55:1 (2010), 18–22 | DOI | MR | Zbl
[7] A. M. Khludnev, A. A. Novotny, J. Sokolowski, A. Zochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, Journal Mechanics and Physics of Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl
[8] E. M. Rudoy, “The Griffith formula and Cherepanov–Rice integral for a plate with a rigid inclusion and a crack”, Journal of Mathematical Sciences, 186:3 (2012), 511–529 | DOI
[9] N. V. Neustroeva, “A rigid inclusion in the contact problem for elastic plates”, Journal of Applied and Industrial Mathematics, 4:4 (2010), 526–538 | DOI
[10] T. A. Rotanova, “Contact problem for plates with rigid inclusions intersecting the boundary”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 3, 99–107 (in Russian)
[11] A. M. Khludnev, “Problem of a crack on the boundary of a rigid inclusion in an elastic plate”, Mechanics of Solids, 45:5 (2010), 733–742 | DOI
[12] A. M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, Moscow, 2010 (in Russian)
[13] A. M. Khludnev, “On bending an elastic plate with a delaminated thin rigid inclusion”, Journal of Applied and Industrial Mathematics, 5:4 (2011), 582–594 | DOI | MR | Zbl
[14] A. S. Volmir, Nonlinear Dynamics of Plates and Shells, Nauka, Moscow, 1972 (in Russian) | MR
[15] B. L. Pelekh, Theory of Shells with Finite Shear Rigidity, Naukova Dumka, Kiev, 1973 (in Russian) | Zbl
[16] G. Fichera, The Existence Theorems in Elasticity, Springer-Verlag, Berlin–Heidelberg–N.Y., 1972 | Zbl
[17] N. P. Lazarev, “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Num. Anal. Appl., 4:4 (2011), 309–318 | DOI | MR
[18] C. Baiocchi, A. Capello, Variational and quasivariational inequalities: Application to free boundary problems, Wiley, New York, 1984 | MR | Zbl
[19] R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985 | MR
[20] A. M. Khludnev, “The Method of Smooth Domains in the Equilibrium Problem for a Plate with a Crack”, Siberian Math. J., 43:6 (2002), 1124–1134 | DOI | MR | Zbl