An equilibrium problem for the Timoshenko-type plate containing a~crack on the boundary of a~rigid inclusion
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 53-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

An equilibrium problem for an elastic Timoshenko type plate containing a rigid inclusion is considered. On the interface between the elastic plate and the rigid inclusion, there is a vertical crack. It is assumed that at both crack faces, boundary conditions of inequality type are considered describing a mutual non-penetration of the faces. A solvability of the problem is proved, and a complete system of boundary conditions is found. It is also shown that the problem is the limit one for a family of other problems posed for a wider domain and describing an equilibrium of elastic plates with a vertical crack as the rigidity parameter goes to infinity.
Keywords: crack, Timoshenko-type plate, rigid inclusion, energy functional, mutual non-penetration condition.
@article{JSFU_2013_6_1_a5,
     author = {Nyurgun P. Lazarev},
     title = {An equilibrium problem for the {Timoshenko-type} plate containing a~crack on the boundary of a~rigid inclusion},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {53--62},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a5/}
}
TY  - JOUR
AU  - Nyurgun P. Lazarev
TI  - An equilibrium problem for the Timoshenko-type plate containing a~crack on the boundary of a~rigid inclusion
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 53
EP  - 62
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a5/
LA  - en
ID  - JSFU_2013_6_1_a5
ER  - 
%0 Journal Article
%A Nyurgun P. Lazarev
%T An equilibrium problem for the Timoshenko-type plate containing a~crack on the boundary of a~rigid inclusion
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 53-62
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a5/
%G en
%F JSFU_2013_6_1_a5
Nyurgun P. Lazarev. An equilibrium problem for the Timoshenko-type plate containing a~crack on the boundary of a~rigid inclusion. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a5/

[1] M. Maiti, “On the extension of a crack due to rigid inclusions”, International Journal of Fracture, 15 (1979), 389–393 | DOI

[2] V. I. Mossakovsky, M. T. Rybka, “Generalization of the Griffith–Sneddon criterion for the case of a nonhomogeneous body”, J. Appl. Math. Mech., 28 (1964), 1277–1286 | DOI

[3] Z. M. Xiao, B. J. Chen, “Stress intensity factor for a Griffith crack interacting with a coated inclusion”, International Journal of Fracture, 108 (2001), 193–205 | DOI

[4] F. Erdogan, G. D. Gupta, M. Ratwani, “Interaction between a circular inclusion and an arbitrarily oriented crack”, ASME Journal of Applied Mechanics, 41 (1974), 1007–1013 | DOI | Zbl

[5] G. P. Sendeckyj, “Interaction of cracks with rigid inclusions in longitudinal shear deformation”, International Journal of Fracture Mechanics, 101 (1974), 45–52

[6] G. Leugering, A. M. Khludnev, “On the equilibrium of elastic bodies containing thin rigid inclusions”, Doklady Physics, 55:1 (2010), 18–22 | DOI | MR | Zbl

[7] A. M. Khludnev, A. A. Novotny, J. Sokolowski, A. Zochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, Journal Mechanics and Physics of Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl

[8] E. M. Rudoy, “The Griffith formula and Cherepanov–Rice integral for a plate with a rigid inclusion and a crack”, Journal of Mathematical Sciences, 186:3 (2012), 511–529 | DOI

[9] N. V. Neustroeva, “A rigid inclusion in the contact problem for elastic plates”, Journal of Applied and Industrial Mathematics, 4:4 (2010), 526–538 | DOI

[10] T. A. Rotanova, “Contact problem for plates with rigid inclusions intersecting the boundary”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 3, 99–107 (in Russian)

[11] A. M. Khludnev, “Problem of a crack on the boundary of a rigid inclusion in an elastic plate”, Mechanics of Solids, 45:5 (2010), 733–742 | DOI

[12] A. M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, Moscow, 2010 (in Russian)

[13] A. M. Khludnev, “On bending an elastic plate with a delaminated thin rigid inclusion”, Journal of Applied and Industrial Mathematics, 5:4 (2011), 582–594 | DOI | MR | Zbl

[14] A. S. Volmir, Nonlinear Dynamics of Plates and Shells, Nauka, Moscow, 1972 (in Russian) | MR

[15] B. L. Pelekh, Theory of Shells with Finite Shear Rigidity, Naukova Dumka, Kiev, 1973 (in Russian) | Zbl

[16] G. Fichera, The Existence Theorems in Elasticity, Springer-Verlag, Berlin–Heidelberg–N.Y., 1972 | Zbl

[17] N. P. Lazarev, “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Num. Anal. Appl., 4:4 (2011), 309–318 | DOI | MR

[18] C. Baiocchi, A. Capello, Variational and quasivariational inequalities: Application to free boundary problems, Wiley, New York, 1984 | MR | Zbl

[19] R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985 | MR

[20] A. M. Khludnev, “The Method of Smooth Domains in the Equilibrium Problem for a Plate with a Crack”, Siberian Math. J., 43:6 (2002), 1124–1134 | DOI | MR | Zbl