Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_1_a14, author = {Vistoria V. Yevstafyeva}, title = {Existence of the unique {kT-periodic} solution for one class of nonlinear systems}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {136--142}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a14/} }
TY - JOUR AU - Vistoria V. Yevstafyeva TI - Existence of the unique kT-periodic solution for one class of nonlinear systems JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 136 EP - 142 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a14/ LA - en ID - JSFU_2013_6_1_a14 ER -
%0 Journal Article %A Vistoria V. Yevstafyeva %T Existence of the unique kT-periodic solution for one class of nonlinear systems %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 136-142 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a14/ %G en %F JSFU_2013_6_1_a14
Vistoria V. Yevstafyeva. Existence of the unique kT-periodic solution for one class of nonlinear systems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 136-142. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a14/
[1] D. K. Potapov, “Control of spectral problems for equations with discontinuous operators”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 190–200 (in Russian)
[2] D. K. Potapov, “Control problems for higher-order systems of elliptic type with a spectral parameter, an external perturbation, and a discontinuous nonlinearity”, Vestn. Voronezh. Gos. Tekhn. Univ., 8:1 (2012), 55–57 (in Russian)
[3] D. K. Potapov, “Control problems for equations with a spectral parameter and a discontinuous operator under perturbations”, J. Sib. Fed. Univ. Math. Phys., 5:2 (2012), 239–245 (in Russian)
[4] D. K. Potapov, “On resolvability of a control problem for one class of equations with discontinuous operators and a spectral parameter”, Vestn. Voronezh. Gos. Univ. Ser. Syst. Anal. and Inform. Technol., 2011, no. 2, 36–39 (in Russian)
[5] V. I. Zubov, Oscillations and waves, Izdat. Leningrad. Gos. Univ., Leningrad, 1989 (in Russian) | MR
[6] R. A. Nelepin, Exact analytical methods in theory of nonlinear automatic systems, Sudostroenie, Leningrad, 1967 (in Russian) | Zbl
[7] V. V. Yevstafyeva, A. M. Kamachkin, “Dynamics of a control system with non-single-valued nonlinearities under an external action”, Analysis and control of nonlinear oscillatory systems, eds. G. A. Leonov, A. L. Fradkov, Nauka, St. Petersburg, 1998, 22–39 (in Russian) | MR
[8] V. V. Yevstafyeva, A. M. Kamachkin, “Control of dynamics of a hysteresis system with an external disturbance”, Vestn. St. Petersb. Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2004, no. 2, 101–109 (in Russian)
[9] A. V. Pokrovskii, “Existence and calculation of stable regimes in relay systems”, Avtomat. i Telemekh., 1986, no. 4, 16–23 (in Russian) | MR
[10] Ufa Math. J., 3:2 (2011), 19–26 | Zbl