Existence of the unique kT-periodic solution for one class of nonlinear systems
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 136-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of ordinary differential equations with the discontinuous hysteresic nonlinearity and an external continuous biharmonic influence is considered. Sufficient conditions are obtained for existence of periodic solutions with given properties, in particular, with the period equal and multiple to the period of the external influence. We use an approach to the choice of feedback coefficients based on a nonsingular transformation of the initial system to a special canonical form. The approach allows to find analytically the switching instants and points of the image point of the required solution.
Keywords: forced periodic oscillations, nonsingular transformations, control systems, discontinuous hysteresic nonlinearity, switching instants and points.
@article{JSFU_2013_6_1_a14,
     author = {Vistoria V. Yevstafyeva},
     title = {Existence of the unique {kT-periodic} solution for one class of nonlinear systems},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {136--142},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a14/}
}
TY  - JOUR
AU  - Vistoria V. Yevstafyeva
TI  - Existence of the unique kT-periodic solution for one class of nonlinear systems
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2013
SP  - 136
EP  - 142
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a14/
LA  - en
ID  - JSFU_2013_6_1_a14
ER  - 
%0 Journal Article
%A Vistoria V. Yevstafyeva
%T Existence of the unique kT-periodic solution for one class of nonlinear systems
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2013
%P 136-142
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a14/
%G en
%F JSFU_2013_6_1_a14
Vistoria V. Yevstafyeva. Existence of the unique kT-periodic solution for one class of nonlinear systems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 136-142. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a14/

[1] D. K. Potapov, “Control of spectral problems for equations with discontinuous operators”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 1, 2011, 190–200 (in Russian)

[2] D. K. Potapov, “Control problems for higher-order systems of elliptic type with a spectral parameter, an external perturbation, and a discontinuous nonlinearity”, Vestn. Voronezh. Gos. Tekhn. Univ., 8:1 (2012), 55–57 (in Russian)

[3] D. K. Potapov, “Control problems for equations with a spectral parameter and a discontinuous operator under perturbations”, J. Sib. Fed. Univ. Math. Phys., 5:2 (2012), 239–245 (in Russian)

[4] D. K. Potapov, “On resolvability of a control problem for one class of equations with discontinuous operators and a spectral parameter”, Vestn. Voronezh. Gos. Univ. Ser. Syst. Anal. and Inform. Technol., 2011, no. 2, 36–39 (in Russian)

[5] V. I. Zubov, Oscillations and waves, Izdat. Leningrad. Gos. Univ., Leningrad, 1989 (in Russian) | MR

[6] R. A. Nelepin, Exact analytical methods in theory of nonlinear automatic systems, Sudostroenie, Leningrad, 1967 (in Russian) | Zbl

[7] V. V. Yevstafyeva, A. M. Kamachkin, “Dynamics of a control system with non-single-valued nonlinearities under an external action”, Analysis and control of nonlinear oscillatory systems, eds. G. A. Leonov, A. L. Fradkov, Nauka, St. Petersburg, 1998, 22–39 (in Russian) | MR

[8] V. V. Yevstafyeva, A. M. Kamachkin, “Control of dynamics of a hysteresis system with an external disturbance”, Vestn. St. Petersb. Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2004, no. 2, 101–109 (in Russian)

[9] A. V. Pokrovskii, “Existence and calculation of stable regimes in relay systems”, Avtomat. i Telemekh., 1986, no. 4, 16–23 (in Russian) | MR

[10] Ufa Math. J., 3:2 (2011), 19–26 | Zbl