Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2013_6_1_a10, author = {Michael G. Sadovsky and Maria Yu. Senashova}, title = {Local information access may cause a~chaos in migration}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {105--113}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a10/} }
TY - JOUR AU - Michael G. Sadovsky AU - Maria Yu. Senashova TI - Local information access may cause a~chaos in migration JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2013 SP - 105 EP - 113 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a10/ LA - en ID - JSFU_2013_6_1_a10 ER -
%0 Journal Article %A Michael G. Sadovsky %A Maria Yu. Senashova %T Local information access may cause a~chaos in migration %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2013 %P 105-113 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a10/ %G en %F JSFU_2013_6_1_a10
Michael G. Sadovsky; Maria Yu. Senashova. Local information access may cause a~chaos in migration. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 6 (2013) no. 1, pp. 105-113. http://geodesic.mathdoc.fr/item/JSFU_2013_6_1_a10/
[1] M. A. McPeekand, R. D. Holt, “The Evolution of Dispersal in Spatially and Temporally Varying Environments”, Am. Nat., 140 (1992), 1010 | DOI
[2] R. Condit, P. S. Ashton, P. Baker, S. Bunyavejchewin, S. Gunatilleke, N. Gunatilleke, S. P. Hubbell, R. B. Foster, A. Itoh, J. V. LaFrankie, Hua Seng Lee, E. Losos, N. Manokaran, R. Sukumar, T. Yamakura, “Spatial patterns in the distribution of tropical tree species”, Science, 288 (2000), 1414–1418 | DOI
[3] J. L. Maron, S. Harrison, “Spatial Pattern Formation in an Insect Host-Parasitoid System”, Science, 278 (1997), 1619–1621 | DOI
[4] P. Soares, M. Tomé, “Distance-dependent competition measures for eucalyptus plantations in Portugal”, Annals of Forestry Science, 56 (1999), 307–319 | DOI
[5] A. N. Gorban, M. G. Sadovsky, “Population mechanisms of cell aggregation in continuous cultivation systems”, Biotechnology and Biotechnique, 2:5 (1987), 34–36
[6] M. G. Sadovsky, Yu. L. Gurevich, N. S. Manukovsky, “Kinetics of cell aggregation in continuous cultivation”, Dynamics of chemical and biological systems, Nauka, Novosibirsk, 1989, 134–158 (in Russian)
[7] P. R. Levitt, “General kin selection models for genetic evolution of sib altruism in diploid and haplodiploid species”, Proc. Nat. Acad. Sci. USA, 72:11 (1975), 4531–4535 | DOI
[8] J. E. Straßmann, Yong Zhu, D. C. Queller, “Altruism and social cheating in the social amoeba. Dictyostelium discoideum”, Nature, 408 (2000), 965–967 | DOI
[9] A. N. Gorban, “Dynamical systems with inheritance”, Some problems of community dynamics, ed. R. G. Khlebopros, Nauka, Novosibirsk, 1992, 40–72 (in Russian) | Zbl
[10] A. N. Gorban, Equilibrium encircling. Equations of chemical kinetics and their thermodynamic analysis, Nauka, Novosibirsk, 1984 (in Russian) | MR
[11] A. N. Gorban, Systems with inheritance: dynamics of distributions with conservation of support, natural selection and finite-dimensional asymptotics, 2005, arXiv: cond-mat/0405451
[12] F. N. Semevsky, S. M. Semenov, Mathematical modelling of ecological processes, Gidrometeoizdat, Leningrad, 1984 (in Russian)
[13] M. Gromov, A dynamical model for synchronisation and for inheritance in microevolution: a survey of papers of A. Gorban, The talk given in the IHES seminar “Initiation to functional genomics: biological, mathematical and algorithmical aspects”, Institut Henri Poincaré, November 16, 2000
[14] A. N. Gorban, M. G. Sadovsky, “Optimization models of spatially distributed populations: Alle's effect”, Rus. J. General Biol., 50:1 (1989), 66–72 (in Russian)
[15] A. N. Gorban, M. G. Sadovsky, “Optimization models: the case of globally informed individuals”, Problems of environmetnal monitoring and modelling of ecosystems, 11, Gidrometeoizdat, Leningrad, 1989, 198–203 (in Russian)
[16] M. G. Sadovsky, “Optimization modelling of globally informed individuals”, Mathematical modelling in biology and chemistry. Evolution approach, Nauka, Novosibirsk, 1992, 36–67 (in Russian)
[17] M. G. Sadovsky, “The Simplest Model of Targeted Migration”, Journal SFU. Mathematics and Physics, 5:1 (2012), 3–17
[18] P. Verhulst, “Recherches mathématiques sur la loi d'accroissement de la population”, Nouv. Mém.de l'Academie Royale des Sci. et Belles-Lettres de Bruxelles, 18 (1845), 1–41
[19] A. N. Sharkovsky, “On cycles and the structure of continuous mapping”, Ukranian mathematical journal, 17:3 (1965), 104–111 (in Russian) | DOI | MR
[20] A. N. Sharkovsky, “Difference equations and population dynamics”, Mathematical methds in biology, Proc. 2nd Ukranian Conf., Naukova Dumka plc., Kiev, 1983, 143–156 (in Russian)
[21] A. Castro-e-Silva, A. T. Bernardes, “Analysis of chaotic behaviour in the population dynamics”, Physica A, 301 (2001), 63–70 | DOI | Zbl
[22] R. M. May, “Simple mathematical models with very complicated dynamics”, Nature, 261 (1976), 459–467 | DOI
[23] H. N. Matsuda, A. Ogita, A. Sasaki, K. Sato, “Statistical mechanics of population: the lattice Lotka–Volterra model”, Progress in Theoretical Physics, 88 (1992), 1035–1049 | DOI