On spectral projection for the complex Neumann problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 439-450

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the $L^2$-spectral kernel function of the $\bar\partial$-Neumann problem on a non-compact strongly pseudoconvex manifold is smooth up to the boundary.
Keywords: $\bar\partial$-Neumann problem, strongly pseudoconvex domains, spectral kernel function.
@article{JSFU_2012_5_4_a0,
     author = {Ammar Alsaedy and Nikolai Tarkhanov},
     title = {On spectral projection for the complex {Neumann} problem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {439--450},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/}
}
TY  - JOUR
AU  - Ammar Alsaedy
AU  - Nikolai Tarkhanov
TI  - On spectral projection for the complex Neumann problem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 439
EP  - 450
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/
LA  - en
ID  - JSFU_2012_5_4_a0
ER  - 
%0 Journal Article
%A Ammar Alsaedy
%A Nikolai Tarkhanov
%T On spectral projection for the complex Neumann problem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 439-450
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/
%G en
%F JSFU_2012_5_4_a0
Ammar Alsaedy; Nikolai Tarkhanov. On spectral projection for the complex Neumann problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 439-450. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/