@article{JSFU_2012_5_4_a0,
author = {Ammar Alsaedy and Nikolai Tarkhanov},
title = {On spectral projection for the complex {Neumann} problem},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {439--450},
year = {2012},
volume = {5},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/}
}
TY - JOUR AU - Ammar Alsaedy AU - Nikolai Tarkhanov TI - On spectral projection for the complex Neumann problem JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 439 EP - 450 VL - 5 IS - 4 UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/ LA - en ID - JSFU_2012_5_4_a0 ER -
Ammar Alsaedy; Nikolai Tarkhanov. On spectral projection for the complex Neumann problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 439-450. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/
[1] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin et al., 1966 | MR | Zbl
[2] J. J. Kohn, “Harmonic integrals on strongly pseudoconvex manifolds. I”, Ann. Math., 78:1 (1963), 112–148 ; “II”, Ann. Math., 79:3 (1964), 450–472 | DOI | MR | Zbl | DOI | MR | Zbl
[3] H. R. Boas, E. J. Straube, “Global regularity of the $\bar\partial$-Neumann problem: A survey of the $L^2$-Sobolev theory”, Several Complex Variables, 37 (1999), 79–111 | MR | Zbl
[4] J. J. Kohn, L. Nirenberg, “Non-coercive boundary value problems”, Comm. Pure Appl. Math., 18 (1965), 443–492 | DOI | MR | Zbl
[5] I. Lieb, J. Michel, The Cauchy-Riemann Complex, Vieweg, Braunschweig/Wiesbaden, 2002 | MR | Zbl
[6] R. Beals, N. K. Stanton, “Estimates on kernels for the $\bar\partial$-equation and the $\bar\partial$-Neumann problem”, Math. Ann., 289 (1991), 73–83 | DOI | MR | Zbl
[7] A. Nagel, E. M. Stein, Lectures on Pseudo-Differential Operators: Regularity Theorems and Applications to Non-Elliptic Problems, Princeton University Press, Princeton, New Jersey, 1979 | MR | Zbl
[8] M. Englis, “Pseudolocal estimates for $\bar\partial$ on general pseudoconvex domains”, Indiana Univ. Math. J., 50 (2001), 1593–1607 | DOI | MR | Zbl
[9] G. Métivier, “Spectral asymptotics for the $\bar\partial$-Neumann problem”, Duke Math. J., 48 (1981), 779–806 | DOI | MR | Zbl
[10] R. Beals, N. K. Stanton, “The heat equation for the $\bar\partial$-Neumann problem. I”, Comm. Part. Diff. Eq., 12 (1987), 351–413 ; “II”, Canad. J. Math., 40 (1988), 502–512 | DOI | MR | Zbl | DOI | MR | Zbl
[11] D. M. McAvity, H. Osborn, “Asymptotic expansion of the heat kernel for generalized boundary conditions”, Classical Quantum Grav., 8 (1991), 1445–1454 | DOI | MR | Zbl
[12] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl
[13] F. Riesz, B. Sz.-Nagy, Lecons d'Analyse {F}onctionnelle, Acad. des Sci. de Hongrie, Budapest, 1952 | MR
[14] Ya. A. Roitberg, Elliptic boundary value problems in the spaces of distributions, Kluwer Academic Publishers, Dordrecht, NL, 1996 | MR | Zbl
[15] N. Kerzman, “The Bergman kernel function. Differentiability at the boundary”, Math. Ann., 195 (1972), 149–158 | DOI | MR