On spectral projection for the complex Neumann problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 439-450
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the $L^2$-spectral kernel function of the $\bar\partial$-Neumann problem on a non-compact strongly pseudoconvex manifold is smooth up to the boundary.
Keywords:
$\bar\partial$-Neumann problem, strongly pseudoconvex domains, spectral kernel function.
@article{JSFU_2012_5_4_a0,
author = {Ammar Alsaedy and Nikolai Tarkhanov},
title = {On spectral projection for the complex {Neumann} problem},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {439--450},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/}
}
TY - JOUR AU - Ammar Alsaedy AU - Nikolai Tarkhanov TI - On spectral projection for the complex Neumann problem JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 439 EP - 450 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/ LA - en ID - JSFU_2012_5_4_a0 ER -
%0 Journal Article %A Ammar Alsaedy %A Nikolai Tarkhanov %T On spectral projection for the complex Neumann problem %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 439-450 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/ %G en %F JSFU_2012_5_4_a0
Ammar Alsaedy; Nikolai Tarkhanov. On spectral projection for the complex Neumann problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 4, pp. 439-450. http://geodesic.mathdoc.fr/item/JSFU_2012_5_4_a0/