On an ill-posed problem for the heat equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 337-348

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for the heat equation is studied. It consists of recovering a function, satisfying the heat equation in a cylindrical domain, via its values ant the values of its normal derivative on a given part of the lateral surface of the cylinder. We prove that the problem is ill-posed in the natural spaces of smooth functions and in the corresponding Hölder spaces; besides, additional initial data do not turn the problem to a well-posed one. Using Integral Representation's Method we obtain Uniqueness Theorem and solvability conditions for the problem.
Keywords: boundary value problems for heat equation, ill-posed problems, integral representation's method.
@article{JSFU_2012_5_3_a4,
     author = {Roman E. Puzyrev and Alexander A. Shlapunov},
     title = {On an ill-posed problem for the heat equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {337--348},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/}
}
TY  - JOUR
AU  - Roman E. Puzyrev
AU  - Alexander A. Shlapunov
TI  - On an ill-posed problem for the heat equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 337
EP  - 348
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/
LA  - en
ID  - JSFU_2012_5_3_a4
ER  - 
%0 Journal Article
%A Roman E. Puzyrev
%A Alexander A. Shlapunov
%T On an ill-posed problem for the heat equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 337-348
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/
%G en
%F JSFU_2012_5_3_a4
Roman E. Puzyrev; Alexander A. Shlapunov. On an ill-posed problem for the heat equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/