On an ill-posed problem for the heat equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 337-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for the heat equation is studied. It consists of recovering a function, satisfying the heat equation in a cylindrical domain, via its values ant the values of its normal derivative on a given part of the lateral surface of the cylinder. We prove that the problem is ill-posed in the natural spaces of smooth functions and in the corresponding Hölder spaces; besides, additional initial data do not turn the problem to a well-posed one. Using Integral Representation's Method we obtain Uniqueness Theorem and solvability conditions for the problem.
Keywords: boundary value problems for heat equation, ill-posed problems, integral representation's method.
@article{JSFU_2012_5_3_a4,
     author = {Roman E. Puzyrev and Alexander A. Shlapunov},
     title = {On an ill-posed problem for the heat equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {337--348},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/}
}
TY  - JOUR
AU  - Roman E. Puzyrev
AU  - Alexander A. Shlapunov
TI  - On an ill-posed problem for the heat equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 337
EP  - 348
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/
LA  - en
ID  - JSFU_2012_5_3_a4
ER  - 
%0 Journal Article
%A Roman E. Puzyrev
%A Alexander A. Shlapunov
%T On an ill-posed problem for the heat equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 337-348
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/
%G en
%F JSFU_2012_5_3_a4
Roman E. Puzyrev; Alexander A. Shlapunov. On an ill-posed problem for the heat equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/

[1] J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale Univ. Press, New Haven–London, 1923 | Zbl

[2] M. M. Lavrent'ev, V. G. Romanov, S. P. Shishatskii, Ill-posed Problems of Mathematical Physics and Analysis, Nauka, M., 1980 (Russian) | MR

[3] A. N. Tihonov, V. Ya. Arsenin, Methods of Solving Ill-posed Problems, Nauka, M., 1986 (Russian)

[4] M. M. Lavrent'ev, “On the Cauchy problem for Laplace equation”, Izvestia AN SSSR. Ser. matem., 20:6 (1956), 819–842 (Russian) | MR | Zbl

[5] Sh. Yarmukhamedov, “On the Cauchy problem for Laplace equation”, Dokl. AN SSSR, 235:21 (1972), 281–283 (Russian) | MR

[6] Kluwer Ac. Publ., Dordrecht, 1993 | MR

[7] N. N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag, Berlin, 1995 | MR | Zbl

[8] L. A. Aizenberg, A. M. Kytmanov, “On the possibility of holomorphic continuation to a domain of functions given on a part of its boundary”, Mat. sb., 182:4 (1991), 490–507 (Russian) | MR | Zbl

[9] A. A. Shlapunov, “On the Cauchy Problem for the Laplace Equation”, Siberian Math. J., 33:3 (1992), 205–215 (Russian) | DOI | MR | Zbl

[10] A. A. Shlapunov, N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols”, Proc. London. Math. Soc., 71:1 (1995), 1–54 | DOI | MR

[11] I. V. Shestakov, A. A. Shlapunov, “On Cauchy problem for operators with injective symbols in the spaces of distributions”, Journal Inverse and Ill-posed Problems, 19 (2011), 127–150 | DOI | MR

[12] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 (Russian)

[13] E. M. Landis, Second Order Equations of Elliptic and Parabolic Types, Nauka, M., 1971 (Russian) | MR | Zbl

[14] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964 | MR | Zbl

[15] V. P. Mikhailov, Partial Differential Equations, Nauka, M., 1976 (Russian) | MR

[16] A. G. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lectures on Mathematical Physics, Nauka, M., 2004 (Russian)