On an ill-posed problem for the heat equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 337-348
Voir la notice de l'article provenant de la source Math-Net.Ru
A boundary value problem for the heat equation is studied. It consists of recovering a function, satisfying the heat equation in a cylindrical domain, via its values ant the values of its normal derivative on a given part of the lateral surface of the cylinder. We prove that the problem is ill-posed in the natural spaces of smooth functions and in the corresponding Hölder spaces; besides, additional initial data do not turn the problem to a well-posed one. Using Integral Representation's Method we obtain Uniqueness Theorem and solvability conditions for the problem.
Keywords:
boundary value problems for heat equation, ill-posed problems, integral representation's method.
@article{JSFU_2012_5_3_a4,
author = {Roman E. Puzyrev and Alexander A. Shlapunov},
title = {On an ill-posed problem for the heat equation},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {337--348},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/}
}
TY - JOUR AU - Roman E. Puzyrev AU - Alexander A. Shlapunov TI - On an ill-posed problem for the heat equation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 337 EP - 348 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/ LA - en ID - JSFU_2012_5_3_a4 ER -
%0 Journal Article %A Roman E. Puzyrev %A Alexander A. Shlapunov %T On an ill-posed problem for the heat equation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 337-348 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/ %G en %F JSFU_2012_5_3_a4
Roman E. Puzyrev; Alexander A. Shlapunov. On an ill-posed problem for the heat equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/