Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2012_5_3_a4, author = {Roman E. Puzyrev and Alexander A. Shlapunov}, title = {On an ill-posed problem for the heat equation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {337--348}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/} }
TY - JOUR AU - Roman E. Puzyrev AU - Alexander A. Shlapunov TI - On an ill-posed problem for the heat equation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 337 EP - 348 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/ LA - en ID - JSFU_2012_5_3_a4 ER -
%0 Journal Article %A Roman E. Puzyrev %A Alexander A. Shlapunov %T On an ill-posed problem for the heat equation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 337-348 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/ %G en %F JSFU_2012_5_3_a4
Roman E. Puzyrev; Alexander A. Shlapunov. On an ill-posed problem for the heat equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a4/
[1] J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale Univ. Press, New Haven–London, 1923 | Zbl
[2] M. M. Lavrent'ev, V. G. Romanov, S. P. Shishatskii, Ill-posed Problems of Mathematical Physics and Analysis, Nauka, M., 1980 (Russian) | MR
[3] A. N. Tihonov, V. Ya. Arsenin, Methods of Solving Ill-posed Problems, Nauka, M., 1986 (Russian)
[4] M. M. Lavrent'ev, “On the Cauchy problem for Laplace equation”, Izvestia AN SSSR. Ser. matem., 20:6 (1956), 819–842 (Russian) | MR | Zbl
[5] Sh. Yarmukhamedov, “On the Cauchy problem for Laplace equation”, Dokl. AN SSSR, 235:21 (1972), 281–283 (Russian) | MR
[6] Kluwer Ac. Publ., Dordrecht, 1993 | MR
[7] N. N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag, Berlin, 1995 | MR | Zbl
[8] L. A. Aizenberg, A. M. Kytmanov, “On the possibility of holomorphic continuation to a domain of functions given on a part of its boundary”, Mat. sb., 182:4 (1991), 490–507 (Russian) | MR | Zbl
[9] A. A. Shlapunov, “On the Cauchy Problem for the Laplace Equation”, Siberian Math. J., 33:3 (1992), 205–215 (Russian) | DOI | MR | Zbl
[10] A. A. Shlapunov, N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols”, Proc. London. Math. Soc., 71:1 (1995), 1–54 | DOI | MR
[11] I. V. Shestakov, A. A. Shlapunov, “On Cauchy problem for operators with injective symbols in the spaces of distributions”, Journal Inverse and Ill-posed Problems, 19 (2011), 127–150 | DOI | MR
[12] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 (Russian)
[13] E. M. Landis, Second Order Equations of Elliptic and Parabolic Types, Nauka, M., 1971 (Russian) | MR | Zbl
[14] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964 | MR | Zbl
[15] V. P. Mikhailov, Partial Differential Equations, Nauka, M., 1976 (Russian) | MR
[16] A. G. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lectures on Mathematical Physics, Nauka, M., 2004 (Russian)