Sharp theorems on multipliers and distances in harmonic function spaces in higher dimension
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 291-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new sharp results concerning multipliers and distance estimates in various spaces of harmonic functions in the unit ball of $\mathbb R^n$.
Keywords: harmonic functions, Bergman spaces, mixed norm spaces, distance estimates.
Mots-clés : multipliers
@article{JSFU_2012_5_3_a0,
     author = {Milo\v{s} Arsenovi\'c and Romi F. Shamoyan},
     title = {Sharp theorems on multipliers and distances in harmonic function spaces in higher dimension},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {291--302},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a0/}
}
TY  - JOUR
AU  - Miloš Arsenović
AU  - Romi F. Shamoyan
TI  - Sharp theorems on multipliers and distances in harmonic function spaces in higher dimension
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 291
EP  - 302
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a0/
LA  - en
ID  - JSFU_2012_5_3_a0
ER  - 
%0 Journal Article
%A Miloš Arsenović
%A Romi F. Shamoyan
%T Sharp theorems on multipliers and distances in harmonic function spaces in higher dimension
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 291-302
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a0/
%G en
%F JSFU_2012_5_3_a0
Miloš Arsenović; Romi F. Shamoyan. Sharp theorems on multipliers and distances in harmonic function spaces in higher dimension. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 291-302. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a0/

[1] A. Shields, D. Williams, “Bounded projections, duality and multipliers in spaces of harmonic functions”, Journal für die reine und angewandte Math., 299–300 (1982), 256–279 | MR

[2] M. Pavlović, “Multipliers of the vanishing Hardy classes”, Publ. de l'Institut Math. Nouvelle serie, 52(66) (1992), 34–36 | MR | Zbl

[3] M. Pavlović, “Convolution in harmonic Hardy space $h^p$ with $0

1$”, Proc. of Amer. Math. Soc., 109:1 (1990), 129–134 | DOI | MR | Zbl

[4] M. Arsenović, R. F. Shamoyan, “On some extremal problems in spaces of harmonic functions”, Romai Journal, 7 (2011), 13–24 | MR

[5] R. F. Shamoyan, O. Mihić, “On new estimates for distances in analytic function spaces in the unit disc, polydisc and unit ball”, Bol. de la Asoc. Matematica Venezolana, 42:2 (2010), 89–103 | MR

[6] R. F. Shamoyan, O. Mihić, “On new estimates for distances in analytic function spaces in higher dimension”, Siberian Electronic Mathematical Reports, 6 (2009), 514–517 | MR

[7] M. Djrbashian, F. Shamoian, Topics in the theory of $A^p_\alpha$ classes, Teubner Texte zur Mathematik, 105, 1988 | MR | Zbl

[8] M. Jevtić, M. Pavlović, “Harmonic Bergman functions on the unit ball in $\mathbb R^n$”, Acta Math. Hungar., 85:1–2 (1999), 81–96 | DOI | MR | Zbl

[9] R. F. Shamoyan, A. Abkar, “A Note on Multipliers of Spaces of Harmonic functions in the Unit Ball of $\mathbb R^n$”, Journal of Inequalities and Special functions, 3:1 (2012), 1–11

[10] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, 1971 | MR