Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2012_5_3_a0, author = {Milo\v{s} Arsenovi\'c and Romi F. Shamoyan}, title = {Sharp theorems on multipliers and distances in harmonic function spaces in higher dimension}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {291--302}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a0/} }
TY - JOUR AU - Miloš Arsenović AU - Romi F. Shamoyan TI - Sharp theorems on multipliers and distances in harmonic function spaces in higher dimension JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 291 EP - 302 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a0/ LA - en ID - JSFU_2012_5_3_a0 ER -
%0 Journal Article %A Miloš Arsenović %A Romi F. Shamoyan %T Sharp theorems on multipliers and distances in harmonic function spaces in higher dimension %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 291-302 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a0/ %G en %F JSFU_2012_5_3_a0
Miloš Arsenović; Romi F. Shamoyan. Sharp theorems on multipliers and distances in harmonic function spaces in higher dimension. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 3, pp. 291-302. http://geodesic.mathdoc.fr/item/JSFU_2012_5_3_a0/
[1] A. Shields, D. Williams, “Bounded projections, duality and multipliers in spaces of harmonic functions”, Journal für die reine und angewandte Math., 299–300 (1982), 256–279 | MR
[2] M. Pavlović, “Multipliers of the vanishing Hardy classes”, Publ. de l'Institut Math. Nouvelle serie, 52(66) (1992), 34–36 | MR | Zbl
[3] M. Pavlović, “Convolution in harmonic Hardy space $h^p$ with $0
1$”, Proc. of Amer. Math. Soc., 109:1 (1990), 129–134 | DOI | MR | Zbl[4] M. Arsenović, R. F. Shamoyan, “On some extremal problems in spaces of harmonic functions”, Romai Journal, 7 (2011), 13–24 | MR
[5] R. F. Shamoyan, O. Mihić, “On new estimates for distances in analytic function spaces in the unit disc, polydisc and unit ball”, Bol. de la Asoc. Matematica Venezolana, 42:2 (2010), 89–103 | MR
[6] R. F. Shamoyan, O. Mihić, “On new estimates for distances in analytic function spaces in higher dimension”, Siberian Electronic Mathematical Reports, 6 (2009), 514–517 | MR
[7] M. Djrbashian, F. Shamoian, Topics in the theory of $A^p_\alpha$ classes, Teubner Texte zur Mathematik, 105, 1988 | MR | Zbl
[8] M. Jevtić, M. Pavlović, “Harmonic Bergman functions on the unit ball in $\mathbb R^n$”, Acta Math. Hungar., 85:1–2 (1999), 81–96 | DOI | MR | Zbl
[9] R. F. Shamoyan, A. Abkar, “A Note on Multipliers of Spaces of Harmonic functions in the Unit Ball of $\mathbb R^n$”, Journal of Inequalities and Special functions, 3:1 (2012), 1–11
[10] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, 1971 | MR