Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2012_5_2_a8, author = {Evgeny N. Mikhalkin}, title = {Certain formulas for solutions to trinomial and tetranomial algebraic equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {230--238}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a8/} }
TY - JOUR AU - Evgeny N. Mikhalkin TI - Certain formulas for solutions to trinomial and tetranomial algebraic equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 230 EP - 238 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a8/ LA - ru ID - JSFU_2012_5_2_a8 ER -
%0 Journal Article %A Evgeny N. Mikhalkin %T Certain formulas for solutions to trinomial and tetranomial algebraic equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 230-238 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a8/ %G ru %F JSFU_2012_5_2_a8
Evgeny N. Mikhalkin. Certain formulas for solutions to trinomial and tetranomial algebraic equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 230-238. http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a8/
[1] E. N. Mikhalkin, “O reshenii obschikh algebraicheskikh uravnenii s pomoschyu integralov ot elementarnykh funktsii”, Sib. matem. zhurn., 47:2 (2006), 365–371 | MR | Zbl
[2] R. Birkeland, “Über die Auflösung algebraischer Gleichungen durch hypergeometrische Funktionen”, Math. Ztschr., 26 (1927), 566–578 | DOI | MR | Zbl
[3] A. M. Perelomov, “Gipergeometricheskie resheniya nekotorykh algebraicheskikh uravnenii”, Teoreticheskaya i matematicheskaya fizika, 140:1 (2004), 3–13 | MR | Zbl
[4] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, Nauka, M., 1973
[5] H. J. Mellin, “Résolution de l‘équation algébrique générale à l’aide de la fonction gamma”, C. R. Acad. Sci. Paris Sér. I Math., 172 (1921), 658–661 | Zbl
[6] A. Yu. Semusheva, A. K. Tsikh, “Prodolzhenie issledovanii Mellina o reshenii algebraicheskikh uravnenii”, Kompleksnyi analiz i differentsialnye operatory (k 150-letiyu S. V. Kovalevskoi), KrasGU, 2000, 134–146
[7] T. Clausen, “Uber die Fälle, wenn die Reihe von der Form $y=1+\frac\alpha1\cdot\frac\beta\gamma x+\frac{\alpha\cdot\alpha+1}{1\cdot2}\cdot\frac{\beta\cdot\beta+1}{\gamma\cdot\gamma+1}x^2+$ etc. ein quadrat von der Form $z=1+\frac{\alpha'}1\cdot\frac{\beta'}{\gamma'}\cdot\frac{\delta'}{\varepsilon'}x+\frac{\alpha'\cdot\alpha'+1}{1\cdot2}\cdot\frac{\beta'\cdot\beta'+1}{\gamma'\cdot\gamma'+1}\cdot\frac{\delta'\cdot\delta'+1}{\varepsilon'\cdot\varepsilon'+1}x^2+$ etc. hat”, Journ. Reine Ang. Math., 3 (1828), 89–91 | DOI | Zbl
[8] M. Passare, A. Tsikh, “Algebraic equations and hypergeometric series”, The legacy of Niels Henrik Abel, Springer, Berlin–Heidelberg–New York, 2004, 653–672 | DOI | MR | Zbl
[9] V. Bârsan, G. A. Nemnes, “Physical relevance of the Passare–Tsikh solution of the principal quintic equation”, Journ. of Adv. Research in Phys., 2:1 (2011), 1–6