On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 213-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to some results connecting with one-dimensional property of holomorphic continuations of functions given on the boundary of bounded domain in $\mathbb C^n$.
Keywords: holomorphic continuations, along complex lines, generic manifold, Bochner–Martinelli integral.
@article{JSFU_2012_5_2_a6,
     author = {Alexander M. Kytmanov and Simona G. Myslivets},
     title = {On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
AU  - Simona G. Myslivets
TI  - On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 213
EP  - 222
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/
LA  - ru
ID  - JSFU_2012_5_2_a6
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%A Simona G. Myslivets
%T On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 213-222
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/
%G ru
%F JSFU_2012_5_2_a6
Alexander M. Kytmanov; Simona G. Myslivets. On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/

[1] M. L. Agranovskii, R. E. Valskii, “Maksimalnost invariantnykh algebr funktsii”, Sib. matem. zhurn., 12:1 (1971), 3–12 | MR

[2] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR | Zbl

[3] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979 | MR

[4] A. M. Kytmanov, S. G. Myslivets, “Ob odnom granichnom analoge teoremy Morera”, Sib. matem. zhurn., 36:6 (1995), 1350–1353 | MR | Zbl

[5] A. M. Kytmanov, S. G. Myslivets, “On an application of the Bochner–Martinelli operator”, Contemporary Math., 212 (1998), 133–136 | DOI | MR | Zbl

[6] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | DOI | MR | Zbl

[7] M. L. Agranovskii, A. M. Semenov, “Granichnye analogi teoremy Gartogsa”, Sib. matem. zhurn., 32:1 (1991), 168–170 | MR

[8] A. M. Kytmanov, S. G. Myslivets, “O semeistvakh kompleksnykh pryamykh, dostatochnykh dlya golomorfnogo prodolzheniya”, Matem. zametki, 83:4 (2008), 545–551 | MR | Zbl

[9] M. S. Baouendi, P. Ebenfelt, L. P. Rothschild, Real submanifolds in complex space and their mappings, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl

[10] Kh. Kh. Karmona, K. Yu. Fedorovskii, P. V. Paramonov, “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | MR | Zbl

[11] A. M. Kytmanov, Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992