On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 213-222

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to some results connecting with one-dimensional property of holomorphic continuations of functions given on the boundary of bounded domain in $\mathbb C^n$.
Keywords: holomorphic continuations, along complex lines, generic manifold, Bochner–Martinelli integral.
@article{JSFU_2012_5_2_a6,
     author = {Alexander M. Kytmanov and Simona G. Myslivets},
     title = {On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
AU  - Simona G. Myslivets
TI  - On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 213
EP  - 222
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/
LA  - ru
ID  - JSFU_2012_5_2_a6
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%A Simona G. Myslivets
%T On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 213-222
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/
%G ru
%F JSFU_2012_5_2_a6
Alexander M. Kytmanov; Simona G. Myslivets. On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/