Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2012_5_2_a6, author = {Alexander M. Kytmanov and Simona G. Myslivets}, title = {On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {213--222}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/} }
TY - JOUR AU - Alexander M. Kytmanov AU - Simona G. Myslivets TI - On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 213 EP - 222 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/ LA - ru ID - JSFU_2012_5_2_a6 ER -
%0 Journal Article %A Alexander M. Kytmanov %A Simona G. Myslivets %T On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 213-222 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/ %G ru %F JSFU_2012_5_2_a6
Alexander M. Kytmanov; Simona G. Myslivets. On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/
[1] M. L. Agranovskii, R. E. Valskii, “Maksimalnost invariantnykh algebr funktsii”, Sib. matem. zhurn., 12:1 (1971), 3–12 | MR
[2] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR | Zbl
[3] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979 | MR
[4] A. M. Kytmanov, S. G. Myslivets, “Ob odnom granichnom analoge teoremy Morera”, Sib. matem. zhurn., 36:6 (1995), 1350–1353 | MR | Zbl
[5] A. M. Kytmanov, S. G. Myslivets, “On an application of the Bochner–Martinelli operator”, Contemporary Math., 212 (1998), 133–136 | DOI | MR | Zbl
[6] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | DOI | MR | Zbl
[7] M. L. Agranovskii, A. M. Semenov, “Granichnye analogi teoremy Gartogsa”, Sib. matem. zhurn., 32:1 (1991), 168–170 | MR
[8] A. M. Kytmanov, S. G. Myslivets, “O semeistvakh kompleksnykh pryamykh, dostatochnykh dlya golomorfnogo prodolzheniya”, Matem. zametki, 83:4 (2008), 545–551 | MR | Zbl
[9] M. S. Baouendi, P. Ebenfelt, L. P. Rothschild, Real submanifolds in complex space and their mappings, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl
[10] Kh. Kh. Karmona, K. Yu. Fedorovskii, P. V. Paramonov, “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | MR | Zbl
[11] A. M. Kytmanov, Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992