On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 213-222
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to some results connecting with one-dimensional property of holomorphic continuations of functions given on the boundary of bounded domain in $\mathbb C^n$.
Keywords:
holomorphic continuations, along complex lines, generic manifold, Bochner–Martinelli integral.
@article{JSFU_2012_5_2_a6,
author = {Alexander M. Kytmanov and Simona G. Myslivets},
title = {On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {213--222},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/}
}
TY - JOUR AU - Alexander M. Kytmanov AU - Simona G. Myslivets TI - On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 213 EP - 222 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/ LA - ru ID - JSFU_2012_5_2_a6 ER -
%0 Journal Article %A Alexander M. Kytmanov %A Simona G. Myslivets %T On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 213-222 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/ %G ru %F JSFU_2012_5_2_a6
Alexander M. Kytmanov; Simona G. Myslivets. On the families of complex lines which are sufficient for holomorphic continuation of functions given on the boundary of the domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 213-222. http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a6/