On the cycles separating the system of~$m$ hypersurfaces in the neighbourhood of the point in~$\mathbb C^n$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 276-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known, that any $n$-cycle on a Stein manifold of dimension $n$, which topologically separates $n$ hypersurfaces, is homologous to the linear combination of the local cycles in the discrete intersection of the hypersurfaces. In this paper we consider the case when $m>n$. Particulary, we proof that in the local case, if $m=n+1$, such cycles is also related with discrete intersection of $n$-subsets of hiperfaces.
Keywords: separating cycle, local residue, local cycle.
@article{JSFU_2012_5_2_a14,
     author = {Roman V. Ulvert},
     title = {On the cycles separating the system of~$m$ hypersurfaces in the neighbourhood of the point in~$\mathbb C^n$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {276--282},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a14/}
}
TY  - JOUR
AU  - Roman V. Ulvert
TI  - On the cycles separating the system of~$m$ hypersurfaces in the neighbourhood of the point in~$\mathbb C^n$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 276
EP  - 282
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a14/
LA  - ru
ID  - JSFU_2012_5_2_a14
ER  - 
%0 Journal Article
%A Roman V. Ulvert
%T On the cycles separating the system of~$m$ hypersurfaces in the neighbourhood of the point in~$\mathbb C^n$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 276-282
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a14/
%G ru
%F JSFU_2012_5_2_a14
Roman V. Ulvert. On the cycles separating the system of~$m$ hypersurfaces in the neighbourhood of the point in~$\mathbb C^n$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 276-282. http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a14/

[1] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[2] A. K. Tsikh, Mnogomernye vychety i ikh primenenie, Nauka, Novosibirsk, 1988 | Zbl

[3] A. K. Tsikh, “Lokalnye vychety v $\mathbb C^n$. Algebraicheskie primeneniya”, Matem. sb., 123(165):2 (1984), 230–242 | MR | Zbl

[4] M. Passare, A. K. Tsikh, A. A. Cheshel, “Kratnye integraly Mellina–Barnsa kak periody mnogoobrazii Kalabi–Yau s neskolkimi modulyami”, TMF, 109:3 (1996), 381–394 | MR | Zbl

[5] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979 | MR

[6] A. P. Yuzhakov, “Razdelyayuschaya podgruppa i lokalnye vychety”, Sib. mat. zhurn., 29:6 (1988), 197–203 | MR | Zbl

[7] A. K. Tsikh, “Kriterii predstavimosti integrala po tsiklu cherez vychety Grotendika. Nekotorye prilozheniya”, Dokl. AN SSSR, 277:5 (1984), 1083–1087 | MR | Zbl

[8] A. K. Tsikh, “O tsiklakh, razdelyayuschikh nuli analiticheskikh funktsii v $\mathbb C^n$”, Sib. mat. zhurn., 16:11 (1975), 1118–1121 | Zbl

[9] A. P. Yuzhakov, “Odno uslovie kogranitsy po Lere i ego primenenie k logarifmicheskomu vychetu”, Sib. mat. zhurn., 11:3 (1970), 708–711 | Zbl

[10] A. P. Yuzhakov, “O razdelenii analiticheskikh osobennostei i razlozhenii na prosteishie drobi golomorfnykh funktsii $n$ peremennykh”, Mnogomernyi kompleksnyi analiz, IF SO SSSR, Krasnoyarsk, 1986, 210–220 | MR