On the cycles separating the system of~$m$ hypersurfaces in the neighbourhood of the point in~$\mathbb C^n$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 276-282
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known, that any $n$-cycle on a Stein manifold of dimension $n$, which topologically separates $n$ hypersurfaces, is homologous to the linear combination of the local cycles in the discrete intersection of the hypersurfaces. In this paper we consider the case when $m>n$. Particulary, we proof that in the local case, if $m=n+1$, such cycles is also related with discrete intersection of $n$-subsets of hiperfaces.
Keywords:
separating cycle, local residue, local cycle.
@article{JSFU_2012_5_2_a14,
author = {Roman V. Ulvert},
title = {On the cycles separating the system of~$m$ hypersurfaces in the neighbourhood of the point in~$\mathbb C^n$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {276--282},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a14/}
}
TY - JOUR AU - Roman V. Ulvert TI - On the cycles separating the system of~$m$ hypersurfaces in the neighbourhood of the point in~$\mathbb C^n$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 276 EP - 282 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a14/ LA - ru ID - JSFU_2012_5_2_a14 ER -
%0 Journal Article %A Roman V. Ulvert %T On the cycles separating the system of~$m$ hypersurfaces in the neighbourhood of the point in~$\mathbb C^n$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 276-282 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a14/ %G ru %F JSFU_2012_5_2_a14
Roman V. Ulvert. On the cycles separating the system of~$m$ hypersurfaces in the neighbourhood of the point in~$\mathbb C^n$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 276-282. http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a14/