Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 256-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the numerical stability of the multilayer finite difference schemes by using methods of the theory of amoebas of algebraic hypersurfaces. We give a necessary condition for the stability of a Cauchy problem for a multilayer scheme and show that it is not a sufficient one. Therefore, we formulate and prove a sufficient condition for the stability.
Keywords: difference scheme, Cauchy problem, stability, amoeba of algebraic hypersurfaces.
@article{JSFU_2012_5_2_a11,
     author = {Marina S. Rogozina},
     title = {Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {256--263},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a11/}
}
TY  - JOUR
AU  - Marina S. Rogozina
TI  - Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 256
EP  - 263
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a11/
LA  - ru
ID  - JSFU_2012_5_2_a11
ER  - 
%0 Journal Article
%A Marina S. Rogozina
%T Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 256-263
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a11/
%G ru
%F JSFU_2012_5_2_a11
Marina S. Rogozina. Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 2, pp. 256-263. http://geodesic.mathdoc.fr/item/JSFU_2012_5_2_a11/

[1] A. A. Pervozvanskii, Kurs teorii avtomaticheskogo upravleniya, Nauka, M., 1986

[2] E. K. Leinartas, D. E. Leinartas, Mnogomernye raznostnye uravneniya, Ucheb. posobie, SFU, Krasnoyarsk, 2010

[3] E. K. Leinartas, “Kratnye ryady Lorana i raznostnye uravneniya”, Sib. matem. zhurn., 45:2 (2004), 387–393 | MR | Zbl

[4] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[5] A. A. Samarskii, Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[6] V. S. Ryabenkii, Vvedenie v vychislitelnuyu matematiku, Ucheb. posobie, Izd. 2-e, ispravl., FIZMATLIT, M., 2000

[7] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Advances in Mathematics, 151:1 (2000), 45–70 | DOI | MR | Zbl

[8] E. K. Leinartas, M. Passare, A. K. Tsikh, “Mnogomernaya versiya teoremy Puankare dlya raznostnykh uravnenii”, Mat. sb., 199:10 (2008), 87–104 | MR | Zbl