Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2012_5_1_a10, author = {Bairambay P. Otemuratov}, title = {Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {97--105}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/} }
TY - JOUR AU - Bairambay P. Otemuratov TI - Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 97 EP - 105 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/ LA - ru ID - JSFU_2012_5_1_a10 ER -
%0 Journal Article %A Bairambay P. Otemuratov %T Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 97-105 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/ %G ru %F JSFU_2012_5_1_a10
Bairambay P. Otemuratov. Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/
[1] M. L. Agranovskii, R. E. Valskii, “Maksimalnost invariantnykh algebr funktsii”, Sib. matem. zhurn., 12:1 (1971), 3–12 | MR
[2] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR | Zbl
[3] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979 | MR
[4] A. M. Kytmanov, Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992
[5] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | DOI | MR | Zbl
[6] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl
[7] A. M. Kytmanov, S. G. Myslivets, “O semeistvakh kompleksnykh pryamykh, dostatochnykh dlya golomorfnogo prodolzheniya”, Matem. zametki, 83:4 (2008), 545–551 | MR | Zbl
[8] B. P. Otemuratov, “O funktsiyakh klassa $L^p$ so svoistvom odnomernogo golomorfnogo prodolzheniya”, Vestnik KrasGU. Ser. fiz. mat. nauki (Krasnoyarsk), 2006, no. 9, 95–100
[9] B. P. Otemuratov, “O mnogomernykh teoremakh Morera dlya integriruemykh funktsii”, Uzb. mat. zhurnal (Tashkent), 2009, no. 2, 129–134 | MR
[10] A. M. Kytmanov, S. G. Myslivets, V. I. Kuzovatov, “Semeistva kompleksnykh pryamykh minimalnoi razmernosti, dostatochnye dlya golomorfnogo prodolzheniya funktsii”, Sib. mat. zhurnal, 52:2 (2011), 326–339 | MR | Zbl