Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 97-105
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider continuous integrable functions given on the boundary of a bounded simply connected domain $D$ of $\mathbb C^n$, $n>1$, and having one-dimensional property of holomorphic extension along the families of complex lines.
Keywords:
holomorphic continuation, integrable functions, Bochner–Martinelli integral.
@article{JSFU_2012_5_1_a10,
author = {Bairambay P. Otemuratov},
title = {Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {97--105},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/}
}
TY - JOUR AU - Bairambay P. Otemuratov TI - Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2012 SP - 97 EP - 105 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/ LA - ru ID - JSFU_2012_5_1_a10 ER -
%0 Journal Article %A Bairambay P. Otemuratov %T Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2012 %P 97-105 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/ %G ru %F JSFU_2012_5_1_a10
Bairambay P. Otemuratov. Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/