Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 97-105

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider continuous integrable functions given on the boundary of a bounded simply connected domain $D$ of $\mathbb C^n$, $n>1$, and having one-dimensional property of holomorphic extension along the families of complex lines.
Keywords: holomorphic continuation, integrable functions, Bochner–Martinelli integral.
@article{JSFU_2012_5_1_a10,
     author = {Bairambay P. Otemuratov},
     title = {Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {97--105},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/}
}
TY  - JOUR
AU  - Bairambay P. Otemuratov
TI  - Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2012
SP  - 97
EP  - 105
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/
LA  - ru
ID  - JSFU_2012_5_1_a10
ER  - 
%0 Journal Article
%A Bairambay P. Otemuratov
%T Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2012
%P 97-105
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/
%G ru
%F JSFU_2012_5_1_a10
Bairambay P. Otemuratov. Some families of complex lines of minimal dimension which are sufficient for holomorphic continuation of integrable functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 5 (2012) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/JSFU_2012_5_1_a10/