An identification problem of source function in the system of composite type
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 4, pp. 445-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

An identification problem of source function for the semievolutionary system of two partial differential equations, one of which is parabolic, and the second – elliptic are investigated. The Cauchy problem and the first boundary-value problem are considered. Initial problems are approximated by problems in which the elliptic equation is replaced with the parabolic equation containing the small parameter $\varepsilon>0$ at a derivative with respect to time.
Keywords: partial differential equations, boundary-value problems, approximation, small parameter
Mots-clés : convergence.
@article{JSFU_2011_4_4_a2,
     author = {Yury Ya. Belov},
     title = {An identification problem of source function in the system of composite type},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {445--457},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_4_a2/}
}
TY  - JOUR
AU  - Yury Ya. Belov
TI  - An identification problem of source function in the system of composite type
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 445
EP  - 457
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_4_a2/
LA  - ru
ID  - JSFU_2011_4_4_a2
ER  - 
%0 Journal Article
%A Yury Ya. Belov
%T An identification problem of source function in the system of composite type
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 445-457
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_4_a2/
%G ru
%F JSFU_2011_4_4_a2
Yury Ya. Belov. An identification problem of source function in the system of composite type. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 4, pp. 445-457. http://geodesic.mathdoc.fr/item/JSFU_2011_4_4_a2/

[1] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967 | Zbl

[2] Yu. Ya. Belov, S. A. Kantor, Metod slaboi approksimatsii, Krasnoyar. gos. un-t, Krasnoyarsk, 1999

[3] Yu. Ya. Belov, “O zadache identifikatsii funktsii istochnika dlya odnoi poluevolyutsionnoi sistemy”, Zhurnal SFU. Matematika i fizika, 3:4 (2010), 487–499

[4] A. P. Oskolkov, “Ob odnoi kvazilineinoi parabolicheskoi sisteme s malym parametrom, approksimiruyuschei sistemu uravnenii Nave–Stoksa”, Zapiski nauchnykh seminarov LOMI AN SSSR, 21, 1971, 79–103 | MR | Zbl

[5] P. E. Sobolevskii, V. V. Vasilev, “Ob odnoi $\varepsilon$-approksimatsii uravnenii Nave–Stoksa”, Chislennye metody mekhaniki sploshnoi sredy, 9:5 (1978), 115–139 | MR

[6] Yu. Ya. Belov, “Teoremy odnoznachnoi razreshimosti i approksimatsii nekotorykh kraevykh zadach dlya sistem uravnenii, opisyvayuschikh techenie okeana”, Sib. matem. zhurn., 20:6 (1979), 1206–1225 | MR | Zbl

[7] V. P. Kochergin, Teoriya i metody rascheta okeanicheskikh techenii, Nauka, M., 1978 | MR

[8] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Novosibirsk, 1983 | MR

[9] Zh. L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, M., 1972

[10] R. Rikhtmaier, “Zvuk i teploprovodnost”, Nekotorye voprosy vychislitelnoi i prikladnoi matematiki, Nauka, Novosibirsk, 1966, 183–185 | MR

[11] Yu. Ya. Belov, Inverse Problems for Partial Differential Equations, VSP, Utrecht–Boston–Köln–Tokyo, 2002 | MR | Zbl

[12] P. Yu. Vyacheslavova, R. V. Sorokin, “Zadacha identifikatsii koeffitsientov pri mladshikh chlenakh v sisteme sostavnogo tipa”, Zhurnal SFU. Matematika i fizika, 2:3 (2009), 288–297

[13] R. V. Sorokin, T. N. Shipina, “O razreshimosti odnoi obratnoi zadachi dlya sistemy sostavnogo tipa”, Vychislitelnye tekhnologii, 8:3 (2003), 139–146

[14] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 1999 | MR