Polynomials, $\alpha$-ideals, and the principal lattice
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 292-297
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a commutative ring with an identity, $\mathfrak R$ be an almost distributive lattice and $I_\alpha(\mathfrak R)$ be the set of all $\alpha$-ideals of $\mathfrak R$. If $L(R)$ is the principal lattice of $R$, then $R[I_\alpha(\mathfrak R)]$ is Cohen–Macaulay. In particular, $R[I_\alpha(\mathfrak R)][X_1,X_2,\cdots]$ is WB-height-unmixed.
Keywords:
almost distributive lattice, principal lattice, $\alpha$-ideals, complete lattice, WB-height-unmixedness, Cohen–Macaulay rings, unmixedness.
Mots-clés : multiplicative lattice
Mots-clés : multiplicative lattice
@article{JSFU_2011_4_3_a2,
author = {Ali Molkhasi},
title = {Polynomials, $\alpha$-ideals, and the principal lattice},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {292--297},
publisher = {mathdoc},
volume = {4},
number = {3},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a2/}
}
TY - JOUR AU - Ali Molkhasi TI - Polynomials, $\alpha$-ideals, and the principal lattice JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2011 SP - 292 EP - 297 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a2/ LA - en ID - JSFU_2011_4_3_a2 ER -
Ali Molkhasi. Polynomials, $\alpha$-ideals, and the principal lattice. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 292-297. http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a2/