Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2011_4_3_a2, author = {Ali Molkhasi}, title = {Polynomials, $\alpha$-ideals, and the principal lattice}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {292--297}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a2/} }
TY - JOUR AU - Ali Molkhasi TI - Polynomials, $\alpha$-ideals, and the principal lattice JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2011 SP - 292 EP - 297 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a2/ LA - en ID - JSFU_2011_4_3_a2 ER -
Ali Molkhasi. Polynomials, $\alpha$-ideals, and the principal lattice. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 292-297. http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a2/
[1] D. F. Anderson, D. E. Dobbs, “Coherent Mori domains and the principal ideal theorem”, Communications in Algebra, 15 (1987), 1119–1156 | DOI | MR | Zbl
[2] W. H. Cornish, “Annulets and $\alpha$-ideals in distributive lattices”, J. Austral. Math. Soc., 15 (1973), 70–77 | DOI | MR | Zbl
[3] R. P. Dilworth, “Dilworth's early papers on residuated and multiplicative lattices”, The Dilworth theorems, Birkhauser, Boston, 1990, 387–390 | MR
[4] R. P. Dilworth, “Abstract commutative ideal theory”, Pacific J. Math., 12 (1962), 481–498 | MR | Zbl
[5] C. de Concini, D. Eisenbud, D. Procesi, Hodge algebras, Asterisque, 91, 1982 | Zbl
[6] M. F. Janowitz, “Principal mutiplicative lattices”, Pacific J. Math., 33 (1970), 653–656 | MR | Zbl
[7] E. W. Johnson, J. Johnson, “Representations of complete regular local Noetherian lattices”, Tamkang journal of mathematics, 39:2 (2008), 137–141 | MR | Zbl
[8] I. Kaplansky, Commutative rings, Alyn and Bacon, 1970 | MR
[9] R. Naghipour, H. Zakrei, N. Zamani, “Cohen-Macaulayness of multiplication rings and modules”, Colloquium Mathematicum, 95 (2002), 133–138 | DOI | MR
[10] G. C. Rao, “$\alpha$-ideals in almost distributive lattices”, Int. J. Contemp. Math. Sciences, 4 (2009), 457–466 | MR | Zbl
[11] U. M. Swamy, G. C. Rao, “Almost distributive lattices”, J. Austral. Math. Soc. Ser. A, 31 (1981), 77–91 | DOI | MR | Zbl