Polynomials, $\alpha$-ideals, and the principal lattice
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 292-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring with an identity, $\mathfrak R$ be an almost distributive lattice and $I_\alpha(\mathfrak R)$ be the set of all $\alpha$-ideals of $\mathfrak R$. If $L(R)$ is the principal lattice of $R$, then $R[I_\alpha(\mathfrak R)]$ is Cohen–Macaulay. In particular, $R[I_\alpha(\mathfrak R)][X_1,X_2,\cdots]$ is WB-height-unmixed.
Keywords: almost distributive lattice, principal lattice, $\alpha$-ideals, complete lattice, WB-height-unmixedness, Cohen–Macaulay rings, unmixedness.
Mots-clés : multiplicative lattice
@article{JSFU_2011_4_3_a2,
     author = {Ali Molkhasi},
     title = {Polynomials, $\alpha$-ideals, and the principal lattice},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {292--297},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a2/}
}
TY  - JOUR
AU  - Ali Molkhasi
TI  - Polynomials, $\alpha$-ideals, and the principal lattice
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 292
EP  - 297
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a2/
LA  - en
ID  - JSFU_2011_4_3_a2
ER  - 
%0 Journal Article
%A Ali Molkhasi
%T Polynomials, $\alpha$-ideals, and the principal lattice
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 292-297
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a2/
%G en
%F JSFU_2011_4_3_a2
Ali Molkhasi. Polynomials, $\alpha$-ideals, and the principal lattice. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 3, pp. 292-297. http://geodesic.mathdoc.fr/item/JSFU_2011_4_3_a2/

[1] D. F. Anderson, D. E. Dobbs, “Coherent Mori domains and the principal ideal theorem”, Communications in Algebra, 15 (1987), 1119–1156 | DOI | MR | Zbl

[2] W. H. Cornish, “Annulets and $\alpha$-ideals in distributive lattices”, J. Austral. Math. Soc., 15 (1973), 70–77 | DOI | MR | Zbl

[3] R. P. Dilworth, “Dilworth's early papers on residuated and multiplicative lattices”, The Dilworth theorems, Birkhauser, Boston, 1990, 387–390 | MR

[4] R. P. Dilworth, “Abstract commutative ideal theory”, Pacific J. Math., 12 (1962), 481–498 | MR | Zbl

[5] C. de Concini, D. Eisenbud, D. Procesi, Hodge algebras, Asterisque, 91, 1982 | Zbl

[6] M. F. Janowitz, “Principal mutiplicative lattices”, Pacific J. Math., 33 (1970), 653–656 | MR | Zbl

[7] E. W. Johnson, J. Johnson, “Representations of complete regular local Noetherian lattices”, Tamkang journal of mathematics, 39:2 (2008), 137–141 | MR | Zbl

[8] I. Kaplansky, Commutative rings, Alyn and Bacon, 1970 | MR

[9] R. Naghipour, H. Zakrei, N. Zamani, “Cohen-Macaulayness of multiplication rings and modules”, Colloquium Mathematicum, 95 (2002), 133–138 | DOI | MR

[10] G. C. Rao, “$\alpha$-ideals in almost distributive lattices”, Int. J. Contemp. Math. Sciences, 4 (2009), 457–466 | MR | Zbl

[11] U. M. Swamy, G. C. Rao, “Almost distributive lattices”, J. Austral. Math. Soc. Ser. A, 31 (1981), 77–91 | DOI | MR | Zbl