Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2011_4_2_a9, author = {Alexander A. Shlapunov}, title = {Boundary problems for {Helmholtz} equation and the {Cauchy} problem for {Dirac} operators}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {217--228}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a9/} }
TY - JOUR AU - Alexander A. Shlapunov TI - Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2011 SP - 217 EP - 228 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a9/ LA - en ID - JSFU_2011_4_2_a9 ER -
%0 Journal Article %A Alexander A. Shlapunov %T Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2011 %P 217-228 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a9/ %G en %F JSFU_2011_4_2_a9
Alexander A. Shlapunov. Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 217-228. http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a9/
[1] A. N. Tikhonov, V. Ya. Arsenin, Solutions of ill-posed problems, Nauka, Moscow, 1986 (Russian) | MR | Zbl
[2] M. M. Lavrent'ev, V. G. Romanov, S. P. Shishatskii, Some ill-posed problems of mathematical physics and analysis, Nauka, Moscow, 1980 (Russian) | MR
[3] A. A. Shlapunov, N. Tarkhanov, “On the Cauchy problem for holomorphic functions of the Lebesgue class $L^2$ in a domain”, Sib. Math. J., 33:5 (1992), 914–922 | DOI | MR | Zbl
[4] A. A. Shlapunov, N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols”, Proc. London Math. Soc., 71:1 (1995), 1–52 | DOI | MR | Zbl
[5] N. Tarkhanov, The Cauchy problem for solutions of elliptic equations, Akademie Verlag, Berlin, 1995 | MR | Zbl
[6] B.-W. Schulze, A. A. Shlapunov, N. Tarkhanov, “Green integrals on manifolds with cracks”, Annals of Global Analysis and Geometry, 24 (2003), 131–160 | DOI | MR | Zbl
[7] A. A. Shlapunov, N. Tarkhanov, “Mixed problems with a parameter”, Russ. J. Math. Phys., 12:1 (2005), 97–124 | MR
[8] N. N. Bogolyubov, D. V. Shirkov, Introduction to the Theory of Quantum fields, Nauka, Moscow, 1984 | MR
[9] B. Booß-Bavnbek, K. P. Wojciechiwski, Elliptic Boundary Problems for Dirac operators, Birkhauser, Berlin, 1993, 308 pp. | MR | Zbl
[10] A. V. Romanov, “Convergence of iterations of the Martinlli-Bochner operator and the Cauchy-Riemann equation”, Dokl. AN SSSR, 242:4 (1978), 780–783 | MR | Zbl
[11] M. Nacinovich, A. A. Shlapunov, “On iterations of the Green integrals and their applications to elliptic differential complexes”, Math. Nachr., 180 (1996), 243–286 | DOI | MR
[12] V. P. Palamodov, Linear partial differential operators with constant coefficients, Nauka, Moscow, 1967 (Russian) | MR
[13] K. O. Friedrichs, “The identity of weak and strong extensions of differential operators”, Trans. AMS, 55:1 (1944), 132–151 | DOI | MR | Zbl
[14] Yu. V. Egorov, M. A. Shubin, Linear Partial Differential equations. Foundations of Classical Theory, Results of Science and Technics. Modern problems of Mathematics. Fundamental directions, 30, VINITI, Moscow, 1988 | MR
[15] R. A. Adams, Sobolev Spaces, Academic Press. Inc., Boston et al., 1978 | Zbl
[16] M. Schechter, “Negative norms and boundary problems”, Ann. Math., 72:3 (1960), 581–593 | DOI | MR | Zbl
[17] A. A. Shlapunov, N. Tarkhanov, “Duality by reproducing kernels”, International Jour. of Math. and Math. Sc., 2003:6 (2003), 327–395 | DOI | MR | Zbl
[18] J. Hadamard, Le problème de Cauchy et les equations aux derivées partielles linéares hyperboliques, Gauthier–Villars, Paris, 1932
[19] T. Carleman, Les Fonctions Quasianalytiques, Gauthier–Villars, Paris, 1926 | Zbl
[20] L. A. Aizenberg, Carleman Formulas in Complex Analysis. First Applications, Nauka, Novosibirsk, 1990 (Russian) | MR
[21] L. A. Aizenberg, A. M. Kytmanov, “On possibility of holomorphic extension to a domain of functions, given on a part of its boundary”, Mat. Sb., 182:4 (1991), 490–597 | MR | Zbl
[22] D. P. Fedchenko, A. A. Shlapunov, “On the Cauchy problem for multi-dimensional Cauchy-Riemann operator in Lebesgue $L^2$ in a domain”, Mat. Sb., 199:11 (2008), 141–160 | MR | Zbl
[23] I. V. Shestakov, “On the Cauchy Problem in Sobolev spaces for Dirac operators”, Izv. VUZ. Mathematics, 2009, no. 7, 51–64 | MR | Zbl
[24] I. V. Shestakov, A. A. Shlapunov, “Negative Sobolev Spaces in the Cauchy Problem for the Cauchy–Riemann Operator”, J. SFU. Mathematics and Physics, 2:1 (2009), 17–30
[25] I. V. Shestakov, A. A. Shlapunov, “On the Cauchy problem for operators with injective symbols in spaces of distributions”, J. Inverse and Ill-posed Problems, 19:1 (2011), 43–54
[26] A. A. Shlapunov, “On iterations of non-negative operators and their applications to elliptic systems”, Math. Nachr., 218 (2000), 165–174 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[27] S. Zaremba, “Sur un problème mixte à l'équation de Laplace”, Bull. Intern. Acad. Sci. Cracovie, 1910, 314–344
[28] S. Simanca, “Mixed elliptic boundary value problems”, Comm. in PDE, 12 (1987), 123–200 | DOI | MR | Zbl
[29] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Nauka, Moscow, 1972 (Russian) | MR | Zbl