Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 217-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

Studying an operator equation $Au=f$ in Hilbert spaces one usually needs the adjoint operator $A^\star$ for $A$. Solving the ill-posed Cauchy problem for Dirac type systems in the Lebesgue spaces by an iteration method we propose to construct the corresponding adjoint operator with the use of normally solvable mixed problem for Helmholtz Equation. This leads to the description of necessary and sufficient solvability conditions for the Cauchy Problem and formulae for its exact and approximate solutions.
Keywords: mixed problems, Helmholtz equation, Dirac operators, ill-posed Cauchy problem.
@article{JSFU_2011_4_2_a9,
     author = {Alexander A. Shlapunov},
     title = {Boundary problems for {Helmholtz} equation and the {Cauchy} problem for {Dirac} operators},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {217--228},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a9/}
}
TY  - JOUR
AU  - Alexander A. Shlapunov
TI  - Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 217
EP  - 228
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a9/
LA  - en
ID  - JSFU_2011_4_2_a9
ER  - 
%0 Journal Article
%A Alexander A. Shlapunov
%T Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 217-228
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a9/
%G en
%F JSFU_2011_4_2_a9
Alexander A. Shlapunov. Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 217-228. http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a9/

[1] A. N. Tikhonov, V. Ya. Arsenin, Solutions of ill-posed problems, Nauka, Moscow, 1986 (Russian) | MR | Zbl

[2] M. M. Lavrent'ev, V. G. Romanov, S. P. Shishatskii, Some ill-posed problems of mathematical physics and analysis, Nauka, Moscow, 1980 (Russian) | MR

[3] A. A. Shlapunov, N. Tarkhanov, “On the Cauchy problem for holomorphic functions of the Lebesgue class $L^2$ in a domain”, Sib. Math. J., 33:5 (1992), 914–922 | DOI | MR | Zbl

[4] A. A. Shlapunov, N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols”, Proc. London Math. Soc., 71:1 (1995), 1–52 | DOI | MR | Zbl

[5] N. Tarkhanov, The Cauchy problem for solutions of elliptic equations, Akademie Verlag, Berlin, 1995 | MR | Zbl

[6] B.-W. Schulze, A. A. Shlapunov, N. Tarkhanov, “Green integrals on manifolds with cracks”, Annals of Global Analysis and Geometry, 24 (2003), 131–160 | DOI | MR | Zbl

[7] A. A. Shlapunov, N. Tarkhanov, “Mixed problems with a parameter”, Russ. J. Math. Phys., 12:1 (2005), 97–124 | MR

[8] N. N. Bogolyubov, D. V. Shirkov, Introduction to the Theory of Quantum fields, Nauka, Moscow, 1984 | MR

[9] B. Booß-Bavnbek, K. P. Wojciechiwski, Elliptic Boundary Problems for Dirac operators, Birkhauser, Berlin, 1993, 308 pp. | MR | Zbl

[10] A. V. Romanov, “Convergence of iterations of the Martinlli-Bochner operator and the Cauchy-Riemann equation”, Dokl. AN SSSR, 242:4 (1978), 780–783 | MR | Zbl

[11] M. Nacinovich, A. A. Shlapunov, “On iterations of the Green integrals and their applications to elliptic differential complexes”, Math. Nachr., 180 (1996), 243–286 | DOI | MR

[12] V. P. Palamodov, Linear partial differential operators with constant coefficients, Nauka, Moscow, 1967 (Russian) | MR

[13] K. O. Friedrichs, “The identity of weak and strong extensions of differential operators”, Trans. AMS, 55:1 (1944), 132–151 | DOI | MR | Zbl

[14] Yu. V. Egorov, M. A. Shubin, Linear Partial Differential equations. Foundations of Classical Theory, Results of Science and Technics. Modern problems of Mathematics. Fundamental directions, 30, VINITI, Moscow, 1988 | MR

[15] R. A. Adams, Sobolev Spaces, Academic Press. Inc., Boston et al., 1978 | Zbl

[16] M. Schechter, “Negative norms and boundary problems”, Ann. Math., 72:3 (1960), 581–593 | DOI | MR | Zbl

[17] A. A. Shlapunov, N. Tarkhanov, “Duality by reproducing kernels”, International Jour. of Math. and Math. Sc., 2003:6 (2003), 327–395 | DOI | MR | Zbl

[18] J. Hadamard, Le problème de Cauchy et les equations aux derivées partielles linéares hyperboliques, Gauthier–Villars, Paris, 1932

[19] T. Carleman, Les Fonctions Quasianalytiques, Gauthier–Villars, Paris, 1926 | Zbl

[20] L. A. Aizenberg, Carleman Formulas in Complex Analysis. First Applications, Nauka, Novosibirsk, 1990 (Russian) | MR

[21] L. A. Aizenberg, A. M. Kytmanov, “On possibility of holomorphic extension to a domain of functions, given on a part of its boundary”, Mat. Sb., 182:4 (1991), 490–597 | MR | Zbl

[22] D. P. Fedchenko, A. A. Shlapunov, “On the Cauchy problem for multi-dimensional Cauchy-Riemann operator in Lebesgue $L^2$ in a domain”, Mat. Sb., 199:11 (2008), 141–160 | MR | Zbl

[23] I. V. Shestakov, “On the Cauchy Problem in Sobolev spaces for Dirac operators”, Izv. VUZ. Mathematics, 2009, no. 7, 51–64 | MR | Zbl

[24] I. V. Shestakov, A. A. Shlapunov, “Negative Sobolev Spaces in the Cauchy Problem for the Cauchy–Riemann Operator”, J. SFU. Mathematics and Physics, 2:1 (2009), 17–30

[25] I. V. Shestakov, A. A. Shlapunov, “On the Cauchy problem for operators with injective symbols in spaces of distributions”, J. Inverse and Ill-posed Problems, 19:1 (2011), 43–54

[26] A. A. Shlapunov, “On iterations of non-negative operators and their applications to elliptic systems”, Math. Nachr., 218 (2000), 165–174 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[27] S. Zaremba, “Sur un problème mixte à l'équation de Laplace”, Bull. Intern. Acad. Sci. Cracovie, 1910, 314–344

[28] S. Simanca, “Mixed elliptic boundary value problems”, Comm. in PDE, 12 (1987), 123–200 | DOI | MR | Zbl

[29] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Nauka, Moscow, 1972 (Russian) | MR | Zbl