Dynamic features of frontal zones structure in the ocean for using in the numerical models based on satellite data
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 208-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

Structural changes in the oceanic temperature frontal zones instead of TFZ, which are determined by the MSST satellite data, are related to the character of interactions between currents. Different intensities of interactions between currents cause either an increase or a decrease in SST gradients. In this work we discuss the reasons causing sharpening of SST gradients exhibited in spatial position of TFZs. Advection, turbulent diffusion, and solar radiation are the main factors for TFZs. The study areas for investigating TFZ dynamics are the North and the South Atlantic and the North and the South Pacific. Similarities in the structures of TFZs in different areas of the ocean have been determined. The 2D model is used to study the separate and concerted influence of advection, turbulence, and solar radiation on the formation of frontal zones. We present analytical and numerical estimates of changes in temperature gradients for the major frontal zones in the ocean and compare them with the satellite data. The variability of SST gradients has been quantified based on satellite, model, and analytical data. The obtained data on spatial and temporal scales of TFZs are indicative of the intensities of convergence and divergence of fluxes; these data are necessary for estimating vertical movement of the water mass as a component of the 3D models.
Keywords: modeling, sea surface temperature gradients, temperature frontal zones, solar radiation
Mots-clés : advection, turbulent diffusion, convergence structures.
@article{JSFU_2011_4_2_a8,
     author = {Alexey V. Kartushinsky},
     title = {Dynamic features of frontal zones structure in the ocean for using in the numerical models based on satellite data},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {208--216},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a8/}
}
TY  - JOUR
AU  - Alexey V. Kartushinsky
TI  - Dynamic features of frontal zones structure in the ocean for using in the numerical models based on satellite data
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 208
EP  - 216
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a8/
LA  - en
ID  - JSFU_2011_4_2_a8
ER  - 
%0 Journal Article
%A Alexey V. Kartushinsky
%T Dynamic features of frontal zones structure in the ocean for using in the numerical models based on satellite data
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 208-216
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a8/
%G en
%F JSFU_2011_4_2_a8
Alexey V. Kartushinsky. Dynamic features of frontal zones structure in the ocean for using in the numerical models based on satellite data. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 208-216. http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a8/

[1] D. Adamec, Variability of frontal zones in the North Pacific, 2002 http://www-aviso.cnes.fr:8090/HTML/information/publication/news/news6/adamec_uk.html

[2] J. Bava, D. A. Gadliardini, A. I. Dogliotti, C. A. Lasta, Annual distribution and variability of remotely sensed sea surface temperature fronts in the Sothwestern Atlantic Ocean, 2002 http://www.iafe.uba.ar/tele/trabajos/2002_poster_Cong_IRSE_sst-fronts.pdf

[3] R. A. Brown, “Remote Sensing of the Pacific Ocean by Satellites”, Pacific Ocean Remote Sensing Congress, ed. Brown R. A., Earth, Ocean and Space Pty. Ltd., New South Wales, 1998, 69–77

[4] A. V. Kartushinsky, “Time-space structure and variability of surface temperature frontal zones in the ocean (based on AVHRR satellite data)”, Adv. Space Res., 25:5 (2000), 1107–1110 | DOI

[5] W. T. Liu, C. Gautier, “Thermal forcing on the tropical Pacific from satellite data”, J. Geophys. Res., 95 (1990), 13209–13217 | DOI

[6] R. W. Reynolds, “A real-time global sea surface temperature analysis”, J. Climate, 1 (1988), 75–86 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] S. Arnault, E. Greiner, B. Bourles, Y. Gouriou, Y. Monard, Tropical atlantic variability: is there anything new on the western front?, 2003 http://www.aviso.oceanobs.com/fileadmin/documents/kiosque/newsletter/news06/arnault_uk.pdf

[8] O. Arzel, T. Huck, “Decadal oscillations in a simplified coupled model due to unstable interactions between zonal winds and ocean gyres”, Dyn. Atmos. Oceans, 37:3 (2003), 245–270 | DOI

[9] S. Kimura, T. Sugimoto, “Two processes by which short-period fluctuations in the meander of the Kuroshio affect its countercurrent”, Deep-Sea Res., 47:1 (2000), 745–754 | DOI

[10] M. A. Miller, B. D. Cornuelle, “Forecasts from fits of frontal fluctuations”, Dyn. Atmos. Oceans, 29 (1999), 305–333 | DOI

[11] M. Nonaka, S.-P. Xie, “Covariations of sea surface temperature and wind over the Kuroshio and its extension: evidence for ocean-to-atmosphere feedback”, J. Climate, 16 (2003), 1404–1413 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[12] O. Boebel, C. Barron, “A comparison of in-situ float velocities with altimeter derived geostrophic velocities”, Deep Sea Res. II, 50 (2003), 119–139 | DOI

[13] O. Boebel, T. Rossby, J. Lutjeharms et al., “Path and variability of the Agulhas Return Current”, Deep Sea Res. II, 50 (2003), 35–56 | DOI

[14] E. Cohen-Solal, H. Le. Treut, “Impact of ocean optical properties on seasonal SST: results with a surface ocean model coupled to the LMD AGCM”, Climate Dynamics, 12 (1996), 417–433 | DOI

[15] J. R. E. Lutjeharms, O. Boebel, H. T. Rossby, “Agulhas Cyclones”, Deep-Sea Res. II, 50 (2003), 13–34 | DOI

[16] P. L. Richardson, S. L. Garzoli, “Characteristics of intermediate water flow in the Buenguela current as measured with RAFOS floats”, Deep Sea Res. II, 50 (2003), 87–118 | DOI

[17] P. L. Richardson, J. R. E. Lutjeharms, O. Boebel, “Introduction to the “Inter-ocean exchange around southern Africa””, Deep Sea Res. II, 50 (2003), 1–12 | DOI

[18] K. Larson, D. L. Hartmann, Interactions among cloud, water vapor, radiation and large-scale circulation in the tropical climate, Part 2. Sensitivity to spatial gradients of sea surface temperature, 2002 http://www.atmos.washington.edu/~dennis/LarsonHartmann_II_2003.pdf

[19] T. F. Stocker, “Abrupt climate changes: from the past to the future – a review”, Int. Journ. Earth Sciences, 88 (1999), 365–374 | DOI

[20] S. Yukimoto, M. Endoh, Y. Kitamura et al., “Interannual and interdecadal variabilities in the Pacific in an MRI coupled GCM”, Clim. Dyn., 12 (1996), 667–683 | DOI

[21] G. Holloway, “Moments of probable seas: statistical dynamics of Planet Ocean”, Physica D, 133 (1999), 199–214 | DOI | MR | Zbl

[22] P. M. Inness, D. Gregory, “Aspects of the intraseasonal oscillation simulated by the Hadley Centre Atmosphere Model”, Climate Dynamics, 13 (1997), 441–458 | DOI

[23] A. V. Kartushinsky, “The investigation on the dynamics of frontal zones in the ocean based on the numerical modelling, using the AVHRR satellite data”, Adv. Space Res., 33 (2004), 1173–1178 | DOI

[24] I. Hense, R. Timmermann, A. Beckmann, U. Bathmann, “Regional and Interannual Variablity of Ecosystem Dynamics in the Southern Ocean”, Ocean Dyn., 53 (2003), 1–10 | DOI

[25] R. X. Huang, J. Pedlosky, “Climate variability of the equatorial thermocline inferred from a two-moving-layer model of the ventilated thermocline”, J. Phys. Oceanogr, 30:11 (2000), 2610–2626 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[26] D. G. Seidov, Synergetics of the Ocean Processes, Gidrometeoizdat, Leningrad, Russia, 1989 (Russian)

[27] R. X. Huang, J. Pedlosky, “Climate variability induced by anomalous buoyancy forcing in a multilayer model of the ventilated thermocline”, J. Phys. Oceanogr., 30:11 (2000), 3009–3021 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[28] http://podaac.jpl.nasa.gov/

[29] A. P. Shevyrnogov, A. V. Kartushinsky, G. S. Vysotskaya, “Application of satellite data for investigation of dynamic processes in inland water bodies: Shira Lake (Khakasia, Siberia), a case study”, Aquatic Ecology, 36:2 (2002), 153–163 | DOI

[30] W. M. Gruzinov, Hydrology of Frontal Zones of the World Ocean, Gidrometeoizdat, Leningrad, Russia, 1986 (Russian)

[31] S. L. Garzoli, “Geostrophic velocity and transport variability in the Brazil-Malvinas confluence”, Deep Sea Res., 40 (1993), 1379–1403 | DOI

[32] B. Jose, D. A. Gagliardini, A. I. Dogliotti, C. A. Lasta, Annual distribution and variability of remotely sensed sea surface temperature fronts in the Southwestern Atlantic Ocean, 2002 http://www.iafe.uba.ar/tele/trabajos/2002_poster_Cong_IRSE_sst-fronts.pdf

[33] F. Vivier, C. Provost, “Direct velocity measurements in the Malvinas Current”, J. Geophys. Res., 104 (1999), 21083–21103 | DOI

[34] R. Garcia, P. Ribera, L. Gimenoo, E. Hernandez, “Are the North Atlantic Oscillation and the Southern Oscillation related in any time-scale?”, Ann. Geophysicae, 18 (2000), 247–251

[35] K. Kozai, K. Ishida, T. Shiozaki, Y. Okada, “Wind-induced upwelling in the western equatorial Pacific Ocean observed by multi-satellite sensors”, Adv. Space Res., 33:7 (2004), 1189–1194 | DOI

[36] D. B. Chelton, S. K. Esbensen, M. G. Schlax, et al., “Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific”, J. Climate, 14 (1999), 1479–1498 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[37] A. I. Ginzburg, A. G. Kostianoy, D. M. Soloviev, S. V. Stanichny, “Remotely sensed coastal/deep-basin water exchange processes in the Black Sea surface layer”, Satellites, Oceanography and Society, ed. D. Halpern, Elsevier Science B.V., 2000, 273–287