Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2011_4_2_a7, author = {Valentina V. Bykova}, title = {Analysis parameterized algorithms on the bases of elasticity to functions complexity}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {195--207}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a7/} }
TY - JOUR AU - Valentina V. Bykova TI - Analysis parameterized algorithms on the bases of elasticity to functions complexity JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2011 SP - 195 EP - 207 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a7/ LA - en ID - JSFU_2011_4_2_a7 ER -
%0 Journal Article %A Valentina V. Bykova %T Analysis parameterized algorithms on the bases of elasticity to functions complexity %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2011 %P 195-207 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a7/ %G en %F JSFU_2011_4_2_a7
Valentina V. Bykova. Analysis parameterized algorithms on the bases of elasticity to functions complexity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 195-207. http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a7/
[1] M. Garey, D. Johnson, Computers and intractability: A guide to the theory of NP-completeness, W. H. Freeman and Company, New York, 1979 | MR | Zbl
[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and approximation, combinatorial optimization problems and their approximability properties, Springer-Verlag, New York, 1999 | MR | Zbl
[3] J. Flum, M. Grohe, Parameterized complexity theory, EATCS Texts in Theoretical Computer Science, Springer-Verlag, Berlin–Heidelberg, 2006 | MR
[4] R. Downey, M. Fellow's, Parameterized complexity, Springer-Verlag, New York, 1999 | MR | Zbl
[5] G. Gottlob, F. Scarcello, M. Sideri, “Fixed-parameter complexity in AI and Nonmonotonic reasoning”, Artificial Intelligence, 138 (2002), 55–86 | DOI | MR | Zbl
[6] H. Bodlaender, R. Downey, M. Fellows, M. Hallett, H. Wareham, “Parameterized complexity analysis in computational biology”, Computer Applications in the Biosciences, 11 (1995), 49–57
[7] C. Papadimitriou, M. Yannakakis, “On the complexity of database queries”, Journal of Computer and System Sciences, 58 (1999), 407–427 | DOI | MR | Zbl
[8] M. Grohe, “The parameterized complexity of database queries”, Proceedings of the 20th ACM Symposium on Principles of Database Systems, 2001, 82–92
[9] R. Niedermeier, Invitation to fixed-parameter Algorithms, Oxford Lecture series in mathematics and its applications, Oxford University Press, 2006 | MR | Zbl
[10] M. Cesati, Compendium of parameterized problems, 2006 http://bravo.ce.uniroma2.it/home/cesati/research/compendium/
[11] G. Gottlob, R. Pichler, F. Wei, “Abduction with bounded treewidth: From theoretical tractability to practically efficient computation”, Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 2008, 1541–1546
[12] T. Cormen, C. Leiserson, R. Rivest, Introduction to algorithms, The MIT Press, Cambridge, MA, 1990 | MR | Zbl
[13] S. Baase, A. Gelder, Computer Algorithms: introduction to Design and Analysis, Addison-Wesley, 2000
[14] V. V. Bykova, “Mathematical methods of analysis recursive algorithms”, Journal of Siberian Federal University. Mathematics and Physics, 1:3 (2008), 236–246
[15] V. V. Bykova, “Complexity and elasticity of the computation”, Proceedings of the third IASTED International Multi-Conference on Automation, Control, and Information Technology (ACIT-CDA 2010) in cooperation with the Russian Academy of Sciences, ACTA Press Anaheim-Calgary-Zurich, 2010, 334–340
[16] V. V. Bykova, “Recognition method of algorithms classes on the basis of asymptotics for elasticity functions complexity”, Journal of Siberian Federal University. Mathematics and Physics, 2:1 (2009), 236–246
[17] V. V. Bykova, “Elasticity of algorithms”, Applied Discrete Mathematics, 2 (2010), 87–95
[18] R. Graham, D. Knuth, O. Patashnik, Concrete mathematics, Addison-Wesley, 1994 | MR | Zbl
[19] L. Cai, D. Juedes, “On the existence of sub-exponential time parameterized algorithms”, Journal of Computer and System Sciences, 67 (2003), 789–807 | DOI | MR | Zbl
[20] J. Flum, M. Grohe, “Parameterized complexity and subexponential time”, Bull. Eur. Assoc. Theoretical Computer Sciences EATCS, 84 (2004), 71–100 | MR | Zbl