Cluster perturbation theory for the Hubbard model: the pinning of chemical potential
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 162-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the single-band two-dimensional Hubbard model in the framework of the cluster perturbation theory. Consideration is limited to nearest-neighbor approximation. The original two-dimensional square lattice is divided into clusters of $2\times2$, forming a square superlattice. The complete set of eigenvectors and eigenvalues of a single cluster is determined by exact diagonalization method. On this basis, we construct X-operators, through which overrides the Hamiltonian of the problem. The spectral function is computed within the Hubbard-I approximation. This function allows to explore the distribution of spectral weight of the quasiparticles in the Hubbard subbands. The effect of the in-gap states at the pinning of the chemical potential at low concentrations of holes is explored.
Keywords: cluster perturbation theory, Hubbard model, strong electron correlation, exact diagonalization, X-operators, density of states.
@article{JSFU_2011_4_2_a2,
     author = {Sergey V. Nikolaev and Sergey G. Ovchinnikov},
     title = {Cluster perturbation theory for the {Hubbard} model: the pinning of chemical potential},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {162--167},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a2/}
}
TY  - JOUR
AU  - Sergey V. Nikolaev
AU  - Sergey G. Ovchinnikov
TI  - Cluster perturbation theory for the Hubbard model: the pinning of chemical potential
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 162
EP  - 167
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a2/
LA  - ru
ID  - JSFU_2011_4_2_a2
ER  - 
%0 Journal Article
%A Sergey V. Nikolaev
%A Sergey G. Ovchinnikov
%T Cluster perturbation theory for the Hubbard model: the pinning of chemical potential
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 162-167
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a2/
%G ru
%F JSFU_2011_4_2_a2
Sergey V. Nikolaev; Sergey G. Ovchinnikov. Cluster perturbation theory for the Hubbard model: the pinning of chemical potential. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 2, pp. 162-167. http://geodesic.mathdoc.fr/item/JSFU_2011_4_2_a2/

[1] A. F. Barabanov, L. A. Maksimov, A. V. Mikheyenkov, “On the bound state of holes for the square-lattice Hubbard model with resonating valence bonds”, J. Phys. Cond. Matt., 1 (1989), 10143–10151 | DOI

[2] S. G. Ovchinnikov, I. S. Sandalov, “The band structure of strong-correlated electrons in La$_{2-x}$Sr$_x$CuO$_4$ and YBa$_2$Cu$_3$O$_{7-y}$”, Physica C, 161 (1989), 607–617 | DOI

[3] M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell et al., “Nonlocal dynamical correlations of strongly interacting electron systems”, Phys. Rev. B, 58 (1998), R7475–R7479 | DOI

[4] D. Senechal, D. Perez, M. Pioro-Ladriere, “Spectral Weight of the Hubbard Model through Cluster Perturbation Theory”, Phys. Rev. Lett., 84 (2000), 522–525 | DOI

[5] G. Kotliar, S. Y. Savrasov, G. Pallson, G. Biroli, “Cellular Dynamical Mean Field Approach to Strongly Correlated Systems”, Phys. Rev. Lett., 87 (2001), 186401, 4 pp. | DOI

[6] V. V. Valkov, V. A. Mitskan, G. A. Petrakovskii, “Magnitouprugii mekhanizm formirovaniya singletnoi fazy kvantovogo dvumernogo antiferromagnetika”, ZhETF, 129 (2006), 268–282

[7] M. Civelli, “Doping-driven evolution of the superconducting state from a doped Mott insulator: Cluster dynamical mean-field theory”, Phys. Rev. B, 79 (2009), 195113, 33 pp. | DOI

[8] M. Balzer, W. Hanke, M. Potthoff, “Importance of local correlations for the order parameter of high-T$_c$ superconductors”, Phys. Rev. B, 81 (2010), 144516, 7 pp. | DOI

[9] G. Sordi, K. Haule, A.-M. S. Tremblay, “Finite Doping Signatures of the Mott Transition in the Two-Dimensional Hubbard Model”, Phys. Rev. Lett., 104 (2010), 226402, 4 pp. | DOI

[10] T. Maier, M. Jarrell, T. Pruschke, M. H. Hettler, “Quantum cluster theories”, Rev. Mod. Phys., 77 (2005), 1027–1080 | DOI

[11] J. Hubbard, “Electron Correlations in Narrow Energy Bands”, J. Proc. Roy. Soc. A, 276 (1963), 238–257 | DOI

[12] S. V. Nikolaev, S. G. Ovchinnikov, “Klasternaya teoriya vozmuschenii dlya modeli Khabbarda s tochnym uchetom blizhnego magnitnogo poryadka v klastere $2\times2$”, ZhETF, 138 (2010), 717–728