Some application of the Bochner--Martinelli integral
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 32-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bochner–Martinelli formula gives the connection between complex and harmonic analysis in $\mathbb C^n$. This becomes especially apparent in the solution of the $\overline\partial$-Neumann problem: any function that is orthogonal to the holomorphic functions is the $\overline\partial$-normal derivative of a harmonic function.
Keywords: Bochner–Martinelli formula, holomorphic function, holomorphic extension, functions with one-dimensional property of holomorphic continuation.
@article{JSFU_2011_4_1_a3,
     author = {Alexander M. Kytmanov},
     title = {Some application of the {Bochner--Martinelli} integral},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {32--42},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a3/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
TI  - Some application of the Bochner--Martinelli integral
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 32
EP  - 42
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a3/
LA  - en
ID  - JSFU_2011_4_1_a3
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%T Some application of the Bochner--Martinelli integral
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 32-42
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a3/
%G en
%F JSFU_2011_4_1_a3
Alexander M. Kytmanov. Some application of the Bochner--Martinelli integral. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 32-42. http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a3/

[1] M. L. Agranovskiĭ, A. M. Semenov, “Boundary analogues of Hartogs's theorem”, Siberian Math. J., 32:1 (1991), 137–139 | DOI | MR | Zbl

[2] A. M. Aronov, A. M. Kytmanov, “The holomorphy of functions that are representable by the Martinelli–Bochner integral”, Functional Anal. Appl., 9:3 (1975), 83–84 | MR | Zbl

[3] S. Bochner, “Analytic and meromorphic continuation by means of Green's formula”, Ann. of Math., 44 (1943), 652–673 | DOI | MR | Zbl

[4] E. M. Chirka, “Analytic representation of $CR$ functions”, Math. USSR Sb., 27:4 (1975), 526–553 | DOI | MR | Zbl

[5] G. B. Folland, J. J. Kohn, The Neumann problem for the Cauchy–Riemann complex, Ann. of Math. Studies, 75, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1972 | MR | Zbl

[6] A. M. Kytmanov, The Bochner-Martinelli integral and its application, Birkhäuser Verlag, Basel–Boston–Berlin, 1995 | MR | Zbl

[7] A. M. Kytmanov, L. A. Aizenberg, “The holomorphy of continuous functions that are representable by the Martinelli–Bochner integral”, Izv. Akad. Nauk Armyan. SSR Ser. Mat., 13 (1978), 158–169 (in Russian) | MR | Zbl

[8] A. M. Kytmanov, S. G. Myslivets, “The singular Bochner–Martinelli integral operator on the hypersurfaces with singular points”, Vestnik NGU. Ser. matematika, mehanika i fizika, 7:2 (2007), 17–32 (in Russian)

[9] A. M. Kytmanov, S. G. Myslivets, “On the families of complex lines which are sufficient for holomorphic continuation”, Mat. Zametki, 83:4 (2008), 545–551 (in Russian) | MR | Zbl

[10] A. M. Kytmanov, S. G. Myslivets, “On Asymptotic Expansion of the Conormal Symbol of the Singular Bochner–Martinelli Operator on the Surfaces with Singular Points”, J. Sib. Fed. Univ. Mathematics and Physics, 1:1 (2008), 3–12

[11] C. H. Look, T. D. Zhong, “An extension of Privalof's theorem”, Acta Math. Sinica, 7:1 (1957), 144–165 (in Chinese, English summary) | MR

[12] E. Martinelli, “Alcuni teoremi integrali per le funzioni analitiche di più variabili complesse”, Mem. R. Accad. Ital., 9 (1938), 269–283 | Zbl

[13] A. V. Romanov, “Convergence of iterates of the Martinelli–Bochner operator and the Cauchy–Riemann equation”, Soviet Math. Dokl., 19:5 (1978), 1211–1215 | Zbl

[14] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR | Zbl