On spherical cycles in the complement to complex hypersurfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 11-17

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known due to S. Yu. Nemirovski, that for $n\geq3$ and generic hypersurface $V\subset\mathbb C^n$ of degree $d\geq3$ there exists a sum of the Whitney spheres homotopic to an embedded sphere, which represents a nontrivial homological class of the homology group $H_n(\mathbb C^n\setminus V)$. We discuss whether a linear combination of the Whitney spheres can be represented as an embedded sphere.
Keywords: homology group, embedding, Whitney sphere.
@article{JSFU_2011_4_1_a1,
     author = {Natalia A. Bushueva},
     title = {On spherical cycles in the complement to complex hypersurfaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {11--17},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/}
}
TY  - JOUR
AU  - Natalia A. Bushueva
TI  - On spherical cycles in the complement to complex hypersurfaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 11
EP  - 17
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/
LA  - en
ID  - JSFU_2011_4_1_a1
ER  - 
%0 Journal Article
%A Natalia A. Bushueva
%T On spherical cycles in the complement to complex hypersurfaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 11-17
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/
%G en
%F JSFU_2011_4_1_a1
Natalia A. Bushueva. On spherical cycles in the complement to complex hypersurfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 11-17. http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/