On spherical cycles in the complement to complex hypersurfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 11-17
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known due to S. Yu. Nemirovski, that for $n\geq3$ and generic hypersurface $V\subset\mathbb C^n$ of degree $d\geq3$ there exists a sum of the Whitney spheres homotopic to an embedded sphere, which represents a nontrivial homological class of the homology group $H_n(\mathbb C^n\setminus V)$. We discuss whether a linear combination of the Whitney spheres can be represented as an embedded sphere.
Keywords:
homology group, embedding, Whitney sphere.
@article{JSFU_2011_4_1_a1,
author = {Natalia A. Bushueva},
title = {On spherical cycles in the complement to complex hypersurfaces},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {11--17},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/}
}
TY - JOUR AU - Natalia A. Bushueva TI - On spherical cycles in the complement to complex hypersurfaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2011 SP - 11 EP - 17 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/ LA - en ID - JSFU_2011_4_1_a1 ER -
Natalia A. Bushueva. On spherical cycles in the complement to complex hypersurfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 11-17. http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/