On spherical cycles in the complement to complex hypersurfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 11-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known due to S. Yu. Nemirovski, that for $n\geq3$ and generic hypersurface $V\subset\mathbb C^n$ of degree $d\geq3$ there exists a sum of the Whitney spheres homotopic to an embedded sphere, which represents a nontrivial homological class of the homology group $H_n(\mathbb C^n\setminus V)$. We discuss whether a linear combination of the Whitney spheres can be represented as an embedded sphere.
Keywords: homology group, embedding, Whitney sphere.
@article{JSFU_2011_4_1_a1,
     author = {Natalia A. Bushueva},
     title = {On spherical cycles in the complement to complex hypersurfaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {11--17},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/}
}
TY  - JOUR
AU  - Natalia A. Bushueva
TI  - On spherical cycles in the complement to complex hypersurfaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2011
SP  - 11
EP  - 17
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/
LA  - en
ID  - JSFU_2011_4_1_a1
ER  - 
%0 Journal Article
%A Natalia A. Bushueva
%T On spherical cycles in the complement to complex hypersurfaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2011
%P 11-17
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/
%G en
%F JSFU_2011_4_1_a1
Natalia A. Bushueva. On spherical cycles in the complement to complex hypersurfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 4 (2011) no. 1, pp. 11-17. http://geodesic.mathdoc.fr/item/JSFU_2011_4_1_a1/

[1] L. A. Aizenberg, A. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Monography AMS, 58, Providence, RI, 1983 | MR | Zbl

[2] A. K. Tsikh, Multidimensional Residues and Their Applications, Monography AMS, 103, Providence, RI, 1992 | MR | Zbl

[3] N. A. Buruchenko, A. K. Tsikh, “On the Homological Reduction of Cycles in the Complement of an Algebraic Hypersurface”, Russ. Acad. Sci. Sb. Math., 186:10 (1995), 1417–1428 | MR | Zbl

[4] J. Leray, “Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy, III)”, Bull. Soc. Math. France, 87:2 (1959), 81–180 | MR | Zbl

[5] A. M. Kytmanov, A. K. Tsikh, “Integral Representations and Residues”, Complex Analysis in Modern Mathematics, To the 80th Birthday of B. V. Shabat, FAZIS, Moscow, 2001, 181–199 (in Russian) | MR | Zbl

[6] S. Yu. Nemirovskii, “Topology of Hypersurface Complements in $\mathbb C^n$ and Rationally Convex Hulls”, Proceedings of the Steklov Institute of Mathematics, 235, 2001, 162–172 | MR | Zbl

[7] A. Libgober, “Homotopy Groups of the Complements to Singular Hypersurfaces. II”, Ann. Math. Ser. S, 139 (1994), 117–144 | MR | Zbl

[8] F. Pham, “Formules de Picard-Lefschetz généralisées et ramification des intégrales”, Bull. Soc. Math. France, 93 (1965), 333–367 | MR | Zbl