An explicit Carleman formula for the Dolbeault cohomology
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 450-460
Voir la notice de l'article provenant de la source Math-Net.Ru
We study formulas which recover a Dolbeault cohomology class in a domain of $\mathbb C^n$ through its values on an open part of the boundary. These are called Carleman formulas after the mathematician who first used such a formula for a simple problem of analytic continuation. For functions of several complex variables our approach gives the simplest formula of analytic continuation from a part of the boundary. The extension problem for the Dolbeault cohomology proves surprisingly to be stable at positive steps if the data are given on a concave piece of the boundary. In this case we construct an explicit extension formula.
Keywords:
$\bar\partial$-operator, cohomology, integral formulas.
@article{JSFU_2010_3_4_a2,
author = {Nikolai Tarkhanov},
title = {An explicit {Carleman} formula for the {Dolbeault} cohomology},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {450--460},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a2/}
}
TY - JOUR AU - Nikolai Tarkhanov TI - An explicit Carleman formula for the Dolbeault cohomology JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2010 SP - 450 EP - 460 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a2/ LA - en ID - JSFU_2010_3_4_a2 ER -
Nikolai Tarkhanov. An explicit Carleman formula for the Dolbeault cohomology. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 450-460. http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a2/