An explicit Carleman formula for the Dolbeault cohomology
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 450-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study formulas which recover a Dolbeault cohomology class in a domain of $\mathbb C^n$ through its values on an open part of the boundary. These are called Carleman formulas after the mathematician who first used such a formula for a simple problem of analytic continuation. For functions of several complex variables our approach gives the simplest formula of analytic continuation from a part of the boundary. The extension problem for the Dolbeault cohomology proves surprisingly to be stable at positive steps if the data are given on a concave piece of the boundary. In this case we construct an explicit extension formula.
Keywords: $\bar\partial$-operator, cohomology, integral formulas.
@article{JSFU_2010_3_4_a2,
     author = {Nikolai Tarkhanov},
     title = {An explicit {Carleman} formula for the {Dolbeault} cohomology},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {450--460},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a2/}
}
TY  - JOUR
AU  - Nikolai Tarkhanov
TI  - An explicit Carleman formula for the Dolbeault cohomology
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 450
EP  - 460
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a2/
LA  - en
ID  - JSFU_2010_3_4_a2
ER  - 
%0 Journal Article
%A Nikolai Tarkhanov
%T An explicit Carleman formula for the Dolbeault cohomology
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 450-460
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a2/
%G en
%F JSFU_2010_3_4_a2
Nikolai Tarkhanov. An explicit Carleman formula for the Dolbeault cohomology. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 4, pp. 450-460. http://geodesic.mathdoc.fr/item/JSFU_2010_3_4_a2/

[1] L. Aizenberg, Carleman Formulas in Comlex Analysis. First Applications, Kluwer Academic Publishers, Dordrecht, NL, 1993 | MR

[2] L. A. Aizenberg, Sh. A. Dautov, Differential Forms Orthogonal to Holomorphic Functions or Forms, and Their Properties, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl

[3] A. Andreotti, H. Grauert, “Théorèmes de finitude pour la cohomologie des espaces complexes”, Bull. Soc. Math. France, 90 (1962), 193–259 | MR | Zbl

[4] A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem. Part 1: Reduction to vanishing theorems”, Ann. Scuola Norm. Super. Pisa, 26:3 (1972), 325–363 | MR | Zbl

[5] A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem. Part 2: Vanishing theorems”, Ann. Scuola Norm. Super. Pisa, 26:4 (1972), 747–806 | MR | Zbl

[6] W. Koppelman,, “The Cauchy integral for differential forms”, Bull. Amer. Math. Soc., 73:4 (1967), 554–556 | DOI | MR | Zbl

[7] M. Nacinovich, B.-W. Schulze, N. Tarkhanov, “On Carleman formulas for the Dolbeault cohomology”, Ann. Univ. Ferrara Sez. VII Sc. Mat. Suppl., 45 (1999), 253–262 | MR | Zbl

[8] I. Shestakov, “Explicit Carleman formulas for the Dolbeault cohomology in concave domains”, Mat. Zam., (submitted)

[9] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl