Gaussian random waves in elastic medium
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 349-356
Voir la notice de l'article provenant de la source Math-Net.Ru
Similar to Berry conjecture for quantum chaos we consider elastic analogue which incorporates longitudinal and transverse random waves. Based on that we derive the intensity correlation function of elastic displacement field. Comparison to numerics in a quarter Bunimovich stadium demonstrates a good agreement. We also consider nodal points (NPs) $u=0$, $v=0$ of the in-plane random vectorial displacement field $\mathbf u=(u,v)$. We derive the mean density and correlation function of NPs. Consequently, we derive the distribution of the nearest distances between NPs.
Keywords:
Gaussian random waves, wave chaos
Mots-clés : billiard, nodal points.
Mots-clés : billiard, nodal points.
@article{JSFU_2010_3_3_a8,
author = {Dmitry N. Maksimov and Almas F. Sadreev},
title = {Gaussian random waves in elastic medium},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {349--356},
publisher = {mathdoc},
volume = {3},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a8/}
}
TY - JOUR AU - Dmitry N. Maksimov AU - Almas F. Sadreev TI - Gaussian random waves in elastic medium JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2010 SP - 349 EP - 356 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a8/ LA - en ID - JSFU_2010_3_3_a8 ER -
Dmitry N. Maksimov; Almas F. Sadreev. Gaussian random waves in elastic medium. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 349-356. http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a8/