Basic modeling of openness, quantum states and transport in two- and three-dimensional ballistic cavities
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 280-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

A basic model for particle states and current flow in open quantum dots/billiards are investigated. The model is unconventional and extends the use of complex potentials first introduced in phenomenological nuclear inelastic scattering theory (the optical model). Attached leads/source drain are represented by complex potentials. Probability densities and currents flows for open 2D quantum dots/billiards are calculated and the results are compared with microwave measurements used to emulate the dot. We also apply the model to a rectangular enclosure and report on helical flows guided by nodal lines and disc-like accumulations of flow lines. The model is of conceptual as well as practical and educational interest.
Keywords: nano-scale systems, quantum dots, microwave billiards, quantum transport, vortices, helical motion, streamlines.
@article{JSFU_2010_3_3_a1,
     author = {Karl-Fredrik Berggren and Iryna I. Yakimenko},
     title = {Basic modeling of openness, quantum states and transport in two- and three-dimensional ballistic cavities},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {280--288},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a1/}
}
TY  - JOUR
AU  - Karl-Fredrik Berggren
AU  - Iryna I. Yakimenko
TI  - Basic modeling of openness, quantum states and transport in two- and three-dimensional ballistic cavities
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 280
EP  - 288
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a1/
LA  - en
ID  - JSFU_2010_3_3_a1
ER  - 
%0 Journal Article
%A Karl-Fredrik Berggren
%A Iryna I. Yakimenko
%T Basic modeling of openness, quantum states and transport in two- and three-dimensional ballistic cavities
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 280-288
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a1/
%G en
%F JSFU_2010_3_3_a1
Karl-Fredrik Berggren; Iryna I. Yakimenko. Basic modeling of openness, quantum states and transport in two- and three-dimensional ballistic cavities. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 3, pp. 280-288. http://geodesic.mathdoc.fr/item/JSFU_2010_3_3_a1/

[1] J. H. Davies, The Physics of Low-dimensional Semiconductors, An Introduction, Cambridge University Press, 1998

[2] H.-J. Stöckmann, Quantum Chaos, An Introduction, Cambridge University Press, 1999 | MR | Zbl

[3] U. Kuhl, “Wave functions, nodal domains, flow, and vortices in open microwave systems”, Eur. Phys. J.-Special Topics, 145 (2007), 103–123 | DOI

[4] O. Bengtsson, J. Larsson, K.-F. Berggren, “Emulation of quantum mechanical billiards by electrical resonance circuits”, Phys. Rev. E, 71 (2005), 056206-1–056206-11 | DOI

[5] H. Feshbach, C. E. Porter, V. F. Weisskopf, “Model of nuclear reactions with neutrons”, Phys. Rev., 96 (1954), 448–464 | DOI | Zbl

[6] L. I. Schiff, Quantum Mechanics, McGraw Hill, N.Y., 1968

[7] I. Rotter, “A continuum shell-model for the open quantum-mechanical nuclear system”, Reports on Progress in Physics, 54 (1991), 635–682 | DOI

[8] M. Müller, I. Rotter, “Phase lapses in open quantum systems, the non-Hermitian Hamiltom operator”, Phys. Rev. A, 80 (2009), 042705-1–0427058-14 | DOI

[9] J. P. Bird, R. Akis, D. K. Ferry, A. P. S. de Moura, Y.-C. Lai, K. M. Indlekofer, “Interference and interactions in open quantum dots”, Rep. Prog. Phys., 66 (2003), 583–632 | DOI

[10] E. J. Heller, M. F. Crommie, G. F. Lutz, D. M. Eigler, “Scattering and Absorption of Surface electron Waves in Quantum Corrals”, Nature, 309 (1994), 464 | DOI

[11] T. Lundberg, E. Sjöqvist, K.-F. Berggren, “Analysis of electron transport in a two-dimensional structure using quantal trajectories”, J. Phys. Condens. Matter, 10 (1998), 5583–5594 | DOI

[12] R. Akis, J. P. Bird, D. K. Ferry, “The effect of inelstic scattering in open quantum dots: Reduction of conductance fluctuations and disruption of wave function scarring”, J. Phys. Condens. Matter, 8 (1996), L667–L674 | DOI

[13] K.-F. Berggren, I. I. Yakimenko, J. Hakanen, B. Wahlstrand, unpublished

[14] A. I. Saichev, K.-F. Berggren, A.F. Sadreev, “Distribution of nearest distances between nodal points for the Berry function in two dimensions”, Phys. Rev. E, 64 (2001), 036222 | DOI | Zbl

[15] A. I. Saichev, H. Ishio, A. F. Sadreev, K.-F. Berggren, “Statistics of interior current distributions in two-dimensional open chaotic billiards”, J. Phys. A Math. and General, 35 (2002), L87–L89 | DOI | MR

[16] K.-F. Berggren, D. N. Maksimov, A. F. Sadreev, “Quantum stress in chaotic billiards”, Phys. Rev. E, 77 (2008), 066209 ; Erratum, 79 (2009), 019901-1–019901-11 | DOI | MR

[17] M. Barth, Mikrowellen-Experimente zu Leveldynamik und Wirbelbildung, PhD dissertation, Philipps-Universität, Marburg, 2001

[18] Y.-H. Kim, M. Barth, H.-J. Stöckmann, J. P. Bird, “Wave function scarring in open quantum dots: A microwave analog study”, Phys. Rev. B, 65 (2002), 165317-1–165317-9 | DOI

[19] K.-F. Berggren, P. Ljung, “Nature of Streamlines for Berry-type Wave Functions in Open 3D Cavities”, Radio Science and Communications Mathematical Modelling of Wave Phenomena, AIP Conference Proceedings, 1106, Växjö University, 2008, 253–259; http://www.vxu.se/mmwp/aip_proceedings