Modelling the Structure of Nanoparticle-embedding Matrices: Molecular Dynamics in $\mathrm{Li}_2\mathrm B_4\mathrm O_7$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 1, pp. 88-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new model describing interatomic and angular interactions, taking into account periodic properties in borate-type solid phases, is presented and applied to $\mathrm{Li}_2\mathrm B_4\mathrm O_7$ through simulations at temperatures ranging from 0 K to the melting point and in the pressure range 0 to 10000 MPa. Simulation reproduces quite well cell lengths, atomic positions and distances in boron-oxygen polyhedrons and the polar nature of the crystal structure. An order-disorder type ferro-paraelectric transition of the second kind is found to occur at a Curie point $T_C\approx839$ K, corresponding to jumping of Li atoms between two lattice sites. By increasing or decreasing the pressure, the total energy and the crystal properties for simulations performed at 300 K show a shoulder at $p_t\approx5000$ MPa, implying the existence of a reversible second-order phase transition. The cell volume below $p_t$ follows a Murnaghan law with the bulk modulus $B_0=15.6$ GPa and its first derivative $B'_0=4.31$ (at ambient pressure). In contrast to the low-pressure phase where threefold and fourfold boron atoms coexist, in the high-pressure phase all borons are fourfold-coordinated. The present approach can be directly applied to modelling the structure of nanosized systems.
Keywords: lithium tetraborate, molecular dynamics, crystal structure, order-disorder ferroelectric transition, pressure-induced phase transition.
@article{JSFU_2010_3_1_a7,
     author = {Alain Marbeuf and Janis Kliava},
     title = {Modelling the {Structure} of {Nanoparticle-embedding} {Matrices:} {Molecular} {Dynamics} in $\mathrm{Li}_2\mathrm B_4\mathrm O_7$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {88--99},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2010_3_1_a7/}
}
TY  - JOUR
AU  - Alain Marbeuf
AU  - Janis Kliava
TI  - Modelling the Structure of Nanoparticle-embedding Matrices: Molecular Dynamics in $\mathrm{Li}_2\mathrm B_4\mathrm O_7$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2010
SP  - 88
EP  - 99
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2010_3_1_a7/
LA  - en
ID  - JSFU_2010_3_1_a7
ER  - 
%0 Journal Article
%A Alain Marbeuf
%A Janis Kliava
%T Modelling the Structure of Nanoparticle-embedding Matrices: Molecular Dynamics in $\mathrm{Li}_2\mathrm B_4\mathrm O_7$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2010
%P 88-99
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2010_3_1_a7/
%G en
%F JSFU_2010_3_1_a7
Alain Marbeuf; Janis Kliava. Modelling the Structure of Nanoparticle-embedding Matrices: Molecular Dynamics in $\mathrm{Li}_2\mathrm B_4\mathrm O_7$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 3 (2010) no. 1, pp. 88-99. http://geodesic.mathdoc.fr/item/JSFU_2010_3_1_a7/

[1] J. Kliava, I. Edelman, O. Ivanova, R. Ivantsov, O. Bayukov, E. Petrakovskaja, V. Zaikovskiy, I. Bruckental, Y. Yeshurun, S. Stepanov, J. Appl. Phys., 104 (2008), 103917, 11 pp. | DOI

[2] N. D. Zhigadlo, M. Zhang, E. K. Salje, J. Phys.: Condens. Matter, 13 (2001), 6551–6561 | DOI

[3] A. V. Vdovin, V. N. Moiseenko, V. S. Gorelik, Ya. V. Burak, Phys. Solid State, 43 (2001), 1648–1654 | DOI

[4] G. L. Paul, W. Taylor, J. Phys. C: Solid State Phys., 15 (1982), 1753–1764 | DOI

[5] S-I. Furusawa, S. Tange, Y. Ishibashi, K. Miwa, J. Phys. Soc. Jpn., 59 (1990), 1825–1830 | DOI

[6] A. E. Elalaoui, A. Maillard, M. D. Fontana, J. Phys.: Condens. Matter, 17 (2005), 7441–7454 | DOI

[7] S-I. Furusawa, O. Chikagawa, S. Tange, T. Ishidate, H. Orihara, Y. Ishibashi, K. Miwa, J. Phys. Soc. Jpn., 60 (1991), 2691–2693 | DOI

[8] H. A. Sideck, G. A. Saunders, B. J. James, J. Phys. Chem. Sol., 51 (1990), 457–465 | DOI

[9] T. Y. Kwon, J. J. Ju, H. K. Kim, J. W. Cha, J. N. Kim, M. Cha, S. I. Yun, Mater. Lett., 27 (1996), 317–321 | DOI

[10] H. R. Jung, B. M. Jin, J. W. Cha, J. N. Kim, Mater. Lett., 30 (1997), 41–45 | DOI

[11] I. Martynyuk-Lototska, O. Mys, V. Adamiv, Y. Y. Burak, R. Vlokh, Ukr. J. Phys. Opt., 3 (2003), 264–266 | DOI

[12] P. Ewald, Ann. Phys., 64 (1921), 253 | DOI | Zbl

[13] V. V. Maslyuk, M. M. Islam, T. Bredow, Phys. Rev. B, 72 (2005), 125101, 9 pp. | DOI

[14] V. V. Maslyuk, T. Bredow, H. Pfnür, Eur. Phys. J. B, 41 (2004), 281–287 | DOI

[15] V. V. Maslyuk, T. Bredow, H. Pfnür, Eur. Phys. J. B, 42 (2004), 461–466 | DOI

[16] M. D. Mathiews, A. K. Tyagi, P. N. Moorthy, Thermochim. Acta, 320 (1998), 89–95 | DOI

[17] J. Krogh-Moe, Acta Cryst. B, 15 (1962), 190–193 ; 24 (1968), 179–181 | DOI | DOI

[18] S. F. Radaev, L. A. Muradyan, L. F. Malakhova, Y. V. Burak, V. I. Simonov, Kristallografiya, 34 (1989), 1400

[19] W. Smith, T. R. Forester, I. T. Todorov, DL_POLY Code, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK, 2002

[20] Y. V. Burak, I. E. Moroz, Phys. Chem. Glasses, 44 (2003), 241–243

[21] B. S. R. Sastry, F. A. Hummel, J. Am. Ceram. Soc., 41 (1958), 7–17 | DOI

[22] F. D. Murnaghan, Proc. National Acad. Sci. USA, 30 (1944), 244–247 | DOI

[23] C. T. Prewitt, R. D. Shannon, Acta Cryst. B, 24 (1968), 869–874 | DOI

[24] A. Takada, C. R. A. Catlow, J. S. Lin, G. D. Price, M. H. Lee, V. Milman, M. C. Payne, Phys. Rev. B, 51 (1995), 1447–1455 | DOI

[25] A. Takada, C. R. A. Catlow, G. D. Price, C. L. Hayward, Phys. Chem. Minerals, 24 (1997), 423–431 | DOI