On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 4, pp. 506-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a bounded domain in $\mathbb C^n$ ($n>1$) with a twice smooth boundary $\partial D$. We describe necessary and sufficient Cauchy problem's solvability conditions for the Dolbeault complex in the space of differential forms of bidegree $(0,q)$, $0$, with coefficients from the Sobolev space $H^1(D)$ in the domain $D$.
Keywords: Cauchy problem, Cauchy–Riemann operator
Mots-clés : Dolbeault complex.
@article{JSFU_2009_2_4_a11,
     author = {Dmitry P. Fedchenko},
     title = {On the {Cauchy} {Problem} for the {Dolbeault} {Complex} in the {Sobolev} spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {506--516},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/}
}
TY  - JOUR
AU  - Dmitry P. Fedchenko
TI  - On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 506
EP  - 516
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/
LA  - ru
ID  - JSFU_2009_2_4_a11
ER  - 
%0 Journal Article
%A Dmitry P. Fedchenko
%T On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 506-516
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/
%G ru
%F JSFU_2009_2_4_a11
Dmitry P. Fedchenko. On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 4, pp. 506-516. http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/

[1] L. A. Aizenberg, Formuly Karlemena v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990 | MR

[2] H. Lewy, “An example of a smooth linear partial differential equation without solution”, Ann. Math., 66 (1957), 155–158 | DOI | MR

[3] A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem. I”, Ann. Scuola Norm. Sup. Pisa, 26:3 (1972), 325–363 | MR | Zbl

[4] M. Nacinovich, B. W. Schulze, N. Tarkhanov, “On Carleman formulas for the Dolbeault cohomology”, Ann. Univ. Ferrara Ser. VII Sc. Mat. Suppl., 45 (1999), 253–262 | MR | Zbl

[5] J. Brinkschulte, C. D. Hill, “On the Cauchy problem for the $\overline\partial$ operator”, Ark. Mat., 47:2 (2009), 231–241 | DOI | MR

[6] I. V. Shestakov, O zadache Koshi dlya kogomologii Dolbo, Avtoref. dis. $\dots$ kand. fiz-matem. nauk, SFU, Krasnoyarsk, 2009

[7] L. A. Aizenberg, A. M. Kytmanov, “O vozmozhnosti golomorfnogo prodolzheniya v oblast funktsii, zadannykh na kuske ee granitsy”, Mat. sb., 182:4 (1991), 490–507 | MR | Zbl

[8] D. P. Fedchenko, A. A. Shlapunov, “O zadache Koshi dlya mnogomernogo operatora Koshi–Rimana v prostranstve Lebega $L^2$ v oblasti”, Mat. sb., 199:11 (2008), 141–160 | MR | Zbl

[9] G. M. Khenkin, “Metod integralnykh predstavlenii v kompleksnom analize”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 7, VINITI, M., 1985, 23–124 | MR

[10] \ A. M. Kytmanov, Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992

[11] Yu. V. Egorov, M. A. Shubin, “Lineinye differentsialnye uravneniya s chastnymi proizvodnymi. Osnovy klassicheskoi teorii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 30, VINITI, M., 1988, 5–255 | MR | Zbl

[12] J. J. Kohn, “Subellipticity of the $\overline\partial$-Neumann problem on pseudo-convex domains: sufficient conditions”, Acta Math., 142:1–2 (1979), 79–122 | DOI | MR | Zbl

[13] L. A. Aizenberg, Sh. A. Dautov, Differentsialnye formy, ortogonalnye golomorfnym funktsiyam ili formam, i ikh svoistva, Nauka, Novosibirsk, 1975 | MR

[14] A. A. Shlapunov, N. N. Tarkhanov, “Green's Formulas in Complex Analysis”, Journ. of Math. Sciences, 120:6 (2004), 1868–1900 | DOI | MR | Zbl