On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 4, pp. 506-516

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a bounded domain in $\mathbb C^n$ ($n>1$) with a twice smooth boundary $\partial D$. We describe necessary and sufficient Cauchy problem's solvability conditions for the Dolbeault complex in the space of differential forms of bidegree $(0,q)$, $0$, with coefficients from the Sobolev space $H^1(D)$ in the domain $D$.
Keywords: Cauchy problem, Cauchy–Riemann operator
Mots-clés : Dolbeault complex.
@article{JSFU_2009_2_4_a11,
     author = {Dmitry P. Fedchenko},
     title = {On the {Cauchy} {Problem} for the {Dolbeault} {Complex} in the {Sobolev} spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {506--516},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/}
}
TY  - JOUR
AU  - Dmitry P. Fedchenko
TI  - On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 506
EP  - 516
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/
LA  - ru
ID  - JSFU_2009_2_4_a11
ER  - 
%0 Journal Article
%A Dmitry P. Fedchenko
%T On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 506-516
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/
%G ru
%F JSFU_2009_2_4_a11
Dmitry P. Fedchenko. On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 4, pp. 506-516. http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/