Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2009_2_4_a11, author = {Dmitry P. Fedchenko}, title = {On the {Cauchy} {Problem} for the {Dolbeault} {Complex} in the {Sobolev} spaces}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {506--516}, publisher = {mathdoc}, volume = {2}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/} }
TY - JOUR AU - Dmitry P. Fedchenko TI - On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2009 SP - 506 EP - 516 VL - 2 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/ LA - ru ID - JSFU_2009_2_4_a11 ER -
%0 Journal Article %A Dmitry P. Fedchenko %T On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2009 %P 506-516 %V 2 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/ %G ru %F JSFU_2009_2_4_a11
Dmitry P. Fedchenko. On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 4, pp. 506-516. http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a11/
[1] L. A. Aizenberg, Formuly Karlemena v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990 | MR
[2] H. Lewy, “An example of a smooth linear partial differential equation without solution”, Ann. Math., 66 (1957), 155–158 | DOI | MR
[3] A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem. I”, Ann. Scuola Norm. Sup. Pisa, 26:3 (1972), 325–363 | MR | Zbl
[4] M. Nacinovich, B. W. Schulze, N. Tarkhanov, “On Carleman formulas for the Dolbeault cohomology”, Ann. Univ. Ferrara Ser. VII Sc. Mat. Suppl., 45 (1999), 253–262 | MR | Zbl
[5] J. Brinkschulte, C. D. Hill, “On the Cauchy problem for the $\overline\partial$ operator”, Ark. Mat., 47:2 (2009), 231–241 | DOI | MR
[6] I. V. Shestakov, O zadache Koshi dlya kogomologii Dolbo, Avtoref. dis. $\dots$ kand. fiz-matem. nauk, SFU, Krasnoyarsk, 2009
[7] L. A. Aizenberg, A. M. Kytmanov, “O vozmozhnosti golomorfnogo prodolzheniya v oblast funktsii, zadannykh na kuske ee granitsy”, Mat. sb., 182:4 (1991), 490–507 | MR | Zbl
[8] D. P. Fedchenko, A. A. Shlapunov, “O zadache Koshi dlya mnogomernogo operatora Koshi–Rimana v prostranstve Lebega $L^2$ v oblasti”, Mat. sb., 199:11 (2008), 141–160 | MR | Zbl
[9] G. M. Khenkin, “Metod integralnykh predstavlenii v kompleksnom analize”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 7, VINITI, M., 1985, 23–124 | MR
[10] \ A. M. Kytmanov, Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992
[11] Yu. V. Egorov, M. A. Shubin, “Lineinye differentsialnye uravneniya s chastnymi proizvodnymi. Osnovy klassicheskoi teorii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 30, VINITI, M., 1988, 5–255 | MR | Zbl
[12] J. J. Kohn, “Subellipticity of the $\overline\partial$-Neumann problem on pseudo-convex domains: sufficient conditions”, Acta Math., 142:1–2 (1979), 79–122 | DOI | MR | Zbl
[13] L. A. Aizenberg, Sh. A. Dautov, Differentsialnye formy, ortogonalnye golomorfnym funktsiyam ili formam, i ikh svoistva, Nauka, Novosibirsk, 1975 | MR
[14] A. A. Shlapunov, N. N. Tarkhanov, “Green's Formulas in Complex Analysis”, Journ. of Math. Sciences, 120:6 (2004), 1868–1900 | DOI | MR | Zbl