Theorem on a~Spherical Mean for Inhomogeneous Poroelastic System
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 4, pp. 394-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

Relations of the mean for a vector of displacement of an elastic porous body and a pore pressure for inhomogeneous poroelastic static system, when mass forces and energy dissipation are absent, are obtained.
Keywords: theorem about a spherical mean, a pore pressure.
@article{JSFU_2009_2_4_a1,
     author = {Nasriddin M. Zhabborov and Kholmatzhon Kh. Imomnazarov},
     title = {Theorem on {a~Spherical} {Mean} for {Inhomogeneous} {Poroelastic} {System}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {394--400},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a1/}
}
TY  - JOUR
AU  - Nasriddin M. Zhabborov
AU  - Kholmatzhon Kh. Imomnazarov
TI  - Theorem on a~Spherical Mean for Inhomogeneous Poroelastic System
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 394
EP  - 400
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a1/
LA  - ru
ID  - JSFU_2009_2_4_a1
ER  - 
%0 Journal Article
%A Nasriddin M. Zhabborov
%A Kholmatzhon Kh. Imomnazarov
%T Theorem on a~Spherical Mean for Inhomogeneous Poroelastic System
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 394-400
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a1/
%G ru
%F JSFU_2009_2_4_a1
Nasriddin M. Zhabborov; Kholmatzhon Kh. Imomnazarov. Theorem on a~Spherical Mean for Inhomogeneous Poroelastic System. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 4, pp. 394-400. http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a1/

[1] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[2] B. S. Elepov i dr., Reshenie kraevykh zadach metodom Monte-Karlo, Nauka, Novosibirsk, 1980 | Zbl

[3] S. M. Ermakov, V. V. Nekrutkin, A. S. Sipin, Sluchainye protsessy dlya resheniya klassicheskikh uravnenii matematicheskoi fiziki, Nauka, M., 1984 | MR | Zbl

[4] K. K. Sabelfeld, I. A. Shalimova, “Vektornaya teorema o srednem dlya sistem differentsialnykh uravnenii i vektornye algoritmy bluzhdaniya po sferam”, Metody staticheskogo modelirovaniya, Novosibirsk, 1986, 78–85 | Zbl

[5] K. K. Sabelfeld, I. A. Shalimova, “Teorema o sfericheskom srednem dlya sistem ellipticheskikh uravnenii i uravneniya termouprugikh kolebanii”, Chislennye metody staticheskogo modelirovaniya, Novosibirsk, 1987, 88–94

[6] K. K. Sabelfeld, Metody Monte-Karlo v kraevykh zadachakh, Nauka, Novosibirsk, 1989 | MR

[7] K. K. Sabelfeld, I. A. Shalimova, Spherical means for PDEs, VSP, Utrecht, 1997 | MR | Zbl

[8] J. B. Diaz, L. E. Payne, “On a mean value theorem, and its converse, for the displacements in the theory of elasticity”, Portugaliae Mathematica, 17:4 (1958), 123–126 | MR | Zbl

[9] J. H. Bramble, L. E. Payne, “Some converses of mean value theorems in the theory of elasticity”, J. Math. Anal. Appl., 10:3 (1965), 553–567 | DOI | MR | Zbl

[10] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR | Zbl

[11] V. V. Naumov, “Teoremy o srednem dlya uravneniya garmonicheskikh kolebanii uprugogo tela”, Dinamika sploshnoi sredy, 82, SO AN SSSR, In-t gidrodinamiki, Novosibirsk, 1987, 147–153 | MR

[12] N. M. Zhabborov, Kh. Kh. Imomnazarov, “Teorema o sfericheskom srednem dlya staticheskoi sistemy poristouprugosti”, Trudy mezhd. konfer. “Novye napravleniya v teorii dinamicheskikh sistem i nekorrektnykh zadach”, Samarkand, 2007, 261–263

[13] Yu. M. Grigorev, “Teoremy o srednem dlya neodnorodnykh uravnenii Gelmgoltsa i Lame”, Dinamika sploshnoi sredy, 113, SO RAN, In-t gidrodinamiki, Novosibirsk, 1998, 53–59 | MR

[14] Yu. M. Grigorev, V. V. Naumov, “K teoremam o srednem dlya uravnenii Gelmgoltsa i Lame”, Dokl. RAN, 362:1 (1998), 51–52 | MR

[15] W. F. Brace, B. W. Pauling, C. Scholz, “Dilatancy in the fracture of crystalline rocks”, J. Geophys. Res., 71:16 (1966), 3939–3952

[16] V. N. Nikolaevskii, “Obzor: Zemnaya kora, dilatansiya i zemletryaseniya”, Uspekhi nauki i tekhniki, Mir, M., 1982, 133–215

[17] A. S. Alekseev, B. M. Glinskii, Kh. Kh. Imomnazarov, V. V. Kovalevskii, S. M. Khairetdinov, G. M. Tsibulchik i dr., “Monitoring geometrii i fizicheskikh svoistv “poverkhnostnoi” i “ochagovoi” dilatansnykh zon metodom vibroseismicheskogo prosvechivaniya seismoopasnykh uchastkov zemnoi kory”, Izmenenie okruzhayuschei sredy i klimata, prirodnye i svyazannye s nimi tekhnogennye katastrofy, T. 1, Seismicheskie protsessy i katastrofy, IFZ RAN, M., 2008, 179–236

[18] V. N. Dorovskii, Yu. V. Perepechko, E. I. Romenskii, “Volnovye protsessy v nasyschennykh poristykh uprugodeformiruemykh sredakh”, FGV, 1993, no. 1, 100–111

[19] A. M. Blokhin, V. N. Dorovsky, Mathematical modelling in the theory of multivelocity continuum, Nova Science Publishers, Inc., 1995 | MR

[20] E. V. Grachev, N. M. Zhabborov, Kh. Kh. Imomnazarov, “Sosredotochennaya sila v uprugo-poristom poluprostranstve”, Doklady RAN, 391:3 (2003), 331–333

[21] V. D. Kupradze (red.), Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR