Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2009_2_4_a1, author = {Nasriddin M. Zhabborov and Kholmatzhon Kh. Imomnazarov}, title = {Theorem on {a~Spherical} {Mean} for {Inhomogeneous} {Poroelastic} {System}}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {394--400}, publisher = {mathdoc}, volume = {2}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a1/} }
TY - JOUR AU - Nasriddin M. Zhabborov AU - Kholmatzhon Kh. Imomnazarov TI - Theorem on a~Spherical Mean for Inhomogeneous Poroelastic System JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2009 SP - 394 EP - 400 VL - 2 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a1/ LA - ru ID - JSFU_2009_2_4_a1 ER -
%0 Journal Article %A Nasriddin M. Zhabborov %A Kholmatzhon Kh. Imomnazarov %T Theorem on a~Spherical Mean for Inhomogeneous Poroelastic System %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2009 %P 394-400 %V 2 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a1/ %G ru %F JSFU_2009_2_4_a1
Nasriddin M. Zhabborov; Kholmatzhon Kh. Imomnazarov. Theorem on a~Spherical Mean for Inhomogeneous Poroelastic System. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 4, pp. 394-400. http://geodesic.mathdoc.fr/item/JSFU_2009_2_4_a1/
[1] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[2] B. S. Elepov i dr., Reshenie kraevykh zadach metodom Monte-Karlo, Nauka, Novosibirsk, 1980 | Zbl
[3] S. M. Ermakov, V. V. Nekrutkin, A. S. Sipin, Sluchainye protsessy dlya resheniya klassicheskikh uravnenii matematicheskoi fiziki, Nauka, M., 1984 | MR | Zbl
[4] K. K. Sabelfeld, I. A. Shalimova, “Vektornaya teorema o srednem dlya sistem differentsialnykh uravnenii i vektornye algoritmy bluzhdaniya po sferam”, Metody staticheskogo modelirovaniya, Novosibirsk, 1986, 78–85 | Zbl
[5] K. K. Sabelfeld, I. A. Shalimova, “Teorema o sfericheskom srednem dlya sistem ellipticheskikh uravnenii i uravneniya termouprugikh kolebanii”, Chislennye metody staticheskogo modelirovaniya, Novosibirsk, 1987, 88–94
[6] K. K. Sabelfeld, Metody Monte-Karlo v kraevykh zadachakh, Nauka, Novosibirsk, 1989 | MR
[7] K. K. Sabelfeld, I. A. Shalimova, Spherical means for PDEs, VSP, Utrecht, 1997 | MR | Zbl
[8] J. B. Diaz, L. E. Payne, “On a mean value theorem, and its converse, for the displacements in the theory of elasticity”, Portugaliae Mathematica, 17:4 (1958), 123–126 | MR | Zbl
[9] J. H. Bramble, L. E. Payne, “Some converses of mean value theorems in the theory of elasticity”, J. Math. Anal. Appl., 10:3 (1965), 553–567 | DOI | MR | Zbl
[10] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR | Zbl
[11] V. V. Naumov, “Teoremy o srednem dlya uravneniya garmonicheskikh kolebanii uprugogo tela”, Dinamika sploshnoi sredy, 82, SO AN SSSR, In-t gidrodinamiki, Novosibirsk, 1987, 147–153 | MR
[12] N. M. Zhabborov, Kh. Kh. Imomnazarov, “Teorema o sfericheskom srednem dlya staticheskoi sistemy poristouprugosti”, Trudy mezhd. konfer. “Novye napravleniya v teorii dinamicheskikh sistem i nekorrektnykh zadach”, Samarkand, 2007, 261–263
[13] Yu. M. Grigorev, “Teoremy o srednem dlya neodnorodnykh uravnenii Gelmgoltsa i Lame”, Dinamika sploshnoi sredy, 113, SO RAN, In-t gidrodinamiki, Novosibirsk, 1998, 53–59 | MR
[14] Yu. M. Grigorev, V. V. Naumov, “K teoremam o srednem dlya uravnenii Gelmgoltsa i Lame”, Dokl. RAN, 362:1 (1998), 51–52 | MR
[15] W. F. Brace, B. W. Pauling, C. Scholz, “Dilatancy in the fracture of crystalline rocks”, J. Geophys. Res., 71:16 (1966), 3939–3952
[16] V. N. Nikolaevskii, “Obzor: Zemnaya kora, dilatansiya i zemletryaseniya”, Uspekhi nauki i tekhniki, Mir, M., 1982, 133–215
[17] A. S. Alekseev, B. M. Glinskii, Kh. Kh. Imomnazarov, V. V. Kovalevskii, S. M. Khairetdinov, G. M. Tsibulchik i dr., “Monitoring geometrii i fizicheskikh svoistv “poverkhnostnoi” i “ochagovoi” dilatansnykh zon metodom vibroseismicheskogo prosvechivaniya seismoopasnykh uchastkov zemnoi kory”, Izmenenie okruzhayuschei sredy i klimata, prirodnye i svyazannye s nimi tekhnogennye katastrofy, T. 1, Seismicheskie protsessy i katastrofy, IFZ RAN, M., 2008, 179–236
[18] V. N. Dorovskii, Yu. V. Perepechko, E. I. Romenskii, “Volnovye protsessy v nasyschennykh poristykh uprugodeformiruemykh sredakh”, FGV, 1993, no. 1, 100–111
[19] A. M. Blokhin, V. N. Dorovsky, Mathematical modelling in the theory of multivelocity continuum, Nova Science Publishers, Inc., 1995 | MR
[20] E. V. Grachev, N. M. Zhabborov, Kh. Kh. Imomnazarov, “Sosredotochennaya sila v uprugo-poristom poluprostranstve”, Doklady RAN, 391:3 (2003), 331–333
[21] V. D. Kupradze (red.), Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR