Viscoplastic Flows and Strain Localization in a~Damageable Medium under Impact Loading
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 3, pp. 336-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of experimentally observable phenomena a generalized model of nonlinear interconnected deformation and fracture of damaged polycrystalline media at high-speed shock action was developed. The geometric nonlinearity caused by finite nonlinear deformations depending on the loading speed, the behavior of materials with a changeable microstructure, the anisotropic hardening and the Baushinger effect are considered. The corresponding nonlinear boundary value problems are stated and solved by means of efficient numerical methods. Nonlinear wave processes and localization of deformations in spatial bodies under the influence of explosion and high-speed collision with an obstacle are studied.
Keywords: nonlinearly deformed media, impact loading, damageability, strain localization, mathematical simulation.
Mots-clés : fracture
@article{JSFU_2009_2_3_a9,
     author = {Vladimir A. Petushkov},
     title = {Viscoplastic {Flows} and {Strain} {Localization} in {a~Damageable} {Medium} under {Impact} {Loading}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {336--351},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a9/}
}
TY  - JOUR
AU  - Vladimir A. Petushkov
TI  - Viscoplastic Flows and Strain Localization in a~Damageable Medium under Impact Loading
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 336
EP  - 351
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a9/
LA  - ru
ID  - JSFU_2009_2_3_a9
ER  - 
%0 Journal Article
%A Vladimir A. Petushkov
%T Viscoplastic Flows and Strain Localization in a~Damageable Medium under Impact Loading
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 336-351
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a9/
%G ru
%F JSFU_2009_2_3_a9
Vladimir A. Petushkov. Viscoplastic Flows and Strain Localization in a~Damageable Medium under Impact Loading. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 3, pp. 336-351. http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a9/

[1] D. Raabe, Computational materials science: the simulation of materials, microstructures and properties, Wiley–VCH, 1998

[2] T. Zohdi, “Homogenization methods and multiscale modeling”, Encyclopedia of Computational Mechanics. Vol. 2: Solids and Structures, eds. E. Stein, R. de Borst, T. J. R. Hughes, John Wiley Sons, Chichester, 2004, 407–430

[3] J. W. Hutchinson, “Plasticity at the micron scale”, Int. J. Solids Struct., 37 (2000), 225–238 | DOI | MR | Zbl

[4] A. Needleman, “Computational mechanics at the mesoscale”, Acta Mater., 48:1 (2000), 105–124 | DOI | MR

[5] J. L. Chaboche, “A review of some plasticity and viscoplasticity constitutive theories”, Int. J. Plasticity, 24:10 (2008), 1642–1693 | DOI | Zbl

[6] Y. L. Bai, J. Bai, H. L. Li et al., “Damage evolution, localization and failure of solids subjected to impact loading”, Int. J. Impact Eng., 24:6–7 (2000), 685–701 | DOI

[7] P. R. Guduru, A. J. Rosakis, G. Ravichandran, “Dynamic shear bands: an investigation using high speed optical and infrared diagnostic”, Mech. Mater., 33 (2001), 371–402 | DOI

[8] S. Li., W.-K. Liu, D. Qian et al., “Dynamic shear band propagation and micro-structure of adiabatic shear band”, Comput. Methods Appl. Mech. Eng., 191 (2001), 73–92 | DOI | Zbl

[9] C. Zener, J. H. Hollomon, “Effect of strain rate on plastic flow of steel”, J. Appl. Phys., 14:1 (1944), 2–32

[10] J. H. Giovanola, “Adiabatic shear banding under pure shear loading. Part 1: Direct observation of strain localization and energy dissipation measurement. Part II: Fractographic and metallographic observations”, Mechanics of Materials, 7:1 (1988), 59–87 | DOI

[11] M. E. Backman, S. A. Finnegan, “The propagation of adiabatic shear”, Metallurgical effects at high strain rates, Plenum press, New York, 1973, 531–543

[12] J. A. Nemes, J. Eftis, P. W. Randles, “Viscoplastic constitutive modeling of high strain-rate deformation, material damage and spall fracture”, J. Appl. Mech., 57:2 (1990), 282–291 | DOI

[13] V. A. Petushkov, A. N. Melsitov, K chislennomu modelirovaniyu razrusheniya tonkostennykh obolochek pri intensivnykh impulsnykh vozdeistviyakh, Dep. v VINITI, No 4171-V91, IMASh AN SSSR, M., 1991, 54 pp.

[14] T. Lodygowski, P. Perzyna, “Numerical modeling of localized fracture of inelastic solids in dynamic loading processes”, Int. J. Numer. Meth. Eng., 40 (1997), 4137–4158 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[15] V. N. Kukudzhanov, “O strukture polos lokalizatsii deformirovanii i nelokalnoi plastichnosti pri dinamicheskom nagruzhenii”, Izv. RAN. MTT, 1998, no. 6, 104–115

[16] Yu. N. Rabotnov, “Creep rupture”, Proc. of the XII Intern. Congress on Appl. Mech., Springer, Stanford, 1968, 342–349

[17] D. R. Curran, L. Seaman, D. A. Shockey, “Dynamic failure of solids”, Phys. Reports, 147:5–6 (1987), 253–388 | DOI

[18] Y. Bai, B. Dodd, Adiabatic Shear Localization: Occurrence, Theories and applications, Pergamon Press, Oxford, 1992

[19] A. I. Nadareishvili, V. A Petushkov, M. D. Perminov, “Obobschennaya model zakriticheskogo povedeniya povrezhdaemykh tel pri udarnykh nagruzkakh”, Probl. mashinostr. i avtomat., 2008, no. 4, 94–102

[20] C. Truesdell, W. Noll, The non-linear field theories of mechanics, Handbuch der Physik, Bd. III/3, Springer, N. Y., 1965 | MR

[21] S. B. Segletes, “Thermodynamic Stability of the Mie–Grüneisen Equation of State, and its Relevance to Hydrocode Computations”, J. Appl. Phys., 70 (1991), 2489–2499 | DOI

[22] G. R. Johnson, W. H. Cook, “A constitutive model and data for metals subjected to large strains, high rates and high temperatures”, Proc. of the 7th Int. Symp. on Ballistics, The Netherlands, The Hague, 1983, 541–547

[23] Dzh. F. Bessiling, “Teoriya plasticheskogo techeniya nachalno-izotropnogo materiala, kotoryi anizotropno uprochnyaetsya pri plasticheskikh deformatsiyakh”, Mekhanika, Period. sb., Vyp. 2, Mir, M., 1961, 124–168

[24] V. A. Petushkov, S. F. Kaschenko, “Strukturnoe modelirovanie nelineinykh protsessov deformirovaniya konstruktsii s treschinami pri tsiklicheskikh vozdeistviyakh”, Mashinovedenie AN SSSR, 1988, no. 1, 3–11

[25] V. A. Petushkov, “Statisticheskie faktory v analize protsessov deformirovaniya i otsenke resursa”, Statisticheskie zakonomernosti malotsiklovogo razrusheniya, Nauka, M., 1989, 236–245

[26] V. A. Petushkov, K. V. Frolov, “Dinamika gidrouprugikh sistem pri impulsnom vozbuzhdenii”, Dinamika konstruktsii gidroaerouprugikh sistem, Nauka, M., 2002, 162–202

[27] V. A. Petushkov, N. V. Skorokhodova, “Rasprostranenie udarnykh voln v nelineino deformiruemykh obolochkakh slozhnoi formy”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 81–93

[28] V. A. Petushkov, A. I. Nadareishvili, “Nelineinye protsessy deformirovaniya i razrusheniya ob'emnykh tel pri soudarenii”, Mat. modelirovanie, 16:11 (2004), 33–46 | Zbl

[29] D. R. Lesuer, Experimental investigations of material models forTi-6Al-4V Titanium and 2024-T3 Aluminum, CA 94551, Lawrence Livermore National Laboratory, Livermore, 2003

[30] J. Donea, S. Guiliani, J. P. Halleux, “Prediction of the nonlinear dynamic response of structural. Components using finite elements”, Nucl. Engng. And Design., 37:1 (1976), 95–114 | DOI