Approximation of the Sets of Solutions by Parametric Sets
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 3, pp. 305-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider approximation of the sets of solutions of problems with interval initial data by special parametric sets. The approximations are based on the union of geometric bodies determined by a vector of parameters. Examples of approximation are given for the sets of solutions to a system of linear algebraic equations and dynamical systems.
Keywords: interval analysis, sets of solutions, parametric sets, systems of linear algebraic equations, dynamical systems, wrapping effect.
@article{JSFU_2009_2_3_a5,
     author = {Boris S. Dobronets},
     title = {Approximation of the {Sets} of {Solutions} by {Parametric} {Sets}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {305--311},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a5/}
}
TY  - JOUR
AU  - Boris S. Dobronets
TI  - Approximation of the Sets of Solutions by Parametric Sets
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 305
EP  - 311
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a5/
LA  - ru
ID  - JSFU_2009_2_3_a5
ER  - 
%0 Journal Article
%A Boris S. Dobronets
%T Approximation of the Sets of Solutions by Parametric Sets
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 305-311
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a5/
%G ru
%F JSFU_2009_2_3_a5
Boris S. Dobronets. Approximation of the Sets of Solutions by Parametric Sets. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 3, pp. 305-311. http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a5/

[1] B. S. Dobronets, “On some two-sided methods for solving systems of ordinary differential equations”, Interval Computations, 1992, no. 1(3), 6–19 | MR

[2] D. P. Davey, N. F. Stewart, “Guaranteed error bounds for the initial value problem using polytope arithmetic”, BIT, 16 (1976), 257–268 | DOI | MR | Zbl

[3] K. G. Guderley, C. L. Keller, “A basic theorem in the computation of ellipsoidal error bounds”, Numer. Math., 19 (1972), 218–229 | DOI | MR | Zbl

[4] A. Neumaier, “The wrapping effect, ellipsoid arithmetic, stability and confidence regions”, Computing Suppl., 9 (1993), 175–190 | Zbl

[5] F. L. Chernousko, Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988 | MR

[6] W. Kühn, “Rigorously Computed Orbits of Dynamical Systems without the Wrapping Effect”, Computing, 61 (1998), 47–67 | DOI | MR | Zbl

[7] L. Zholen, M. Kifer, O. Didri, E. Valter, Prikladnoi intervalnyi analiz, Institut kompyuternykh issledovanii, M.–Izhevsk, 2007

[8] B. S. Dobronets, S. L. Roschina, “Spetsialnye priblizheniya mnozhestv reshenii sistem ODU s intervalnymi parametrami”, Voprosy matematicheskogo analiza, 2002, no. 5, 12–17

[9] H. Beeck, “Über die Struktur und Abschätzungen der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten”, Computing, 10 (1972), 231–244 | DOI | MR | Zbl