Approximation of the Sets of Solutions by Parametric Sets
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 3, pp. 305-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider approximation of the sets of solutions of problems with interval initial data by special parametric sets. The approximations are based on the union of geometric bodies determined by a vector of parameters. Examples of approximation are given for the sets of solutions to a system of linear algebraic equations and dynamical systems.
Keywords: interval analysis, sets of solutions, parametric sets, systems of linear algebraic equations, dynamical systems, wrapping effect.
@article{JSFU_2009_2_3_a5,
     author = {Boris S. Dobronets},
     title = {Approximation of the {Sets} of {Solutions} by {Parametric} {Sets}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {305--311},
     year = {2009},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a5/}
}
TY  - JOUR
AU  - Boris S. Dobronets
TI  - Approximation of the Sets of Solutions by Parametric Sets
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 305
EP  - 311
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a5/
LA  - ru
ID  - JSFU_2009_2_3_a5
ER  - 
%0 Journal Article
%A Boris S. Dobronets
%T Approximation of the Sets of Solutions by Parametric Sets
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 305-311
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a5/
%G ru
%F JSFU_2009_2_3_a5
Boris S. Dobronets. Approximation of the Sets of Solutions by Parametric Sets. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 3, pp. 305-311. http://geodesic.mathdoc.fr/item/JSFU_2009_2_3_a5/

[1] B. S. Dobronets, “On some two-sided methods for solving systems of ordinary differential equations”, Interval Computations, 1992, no. 1(3), 6–19 | MR

[2] D. P. Davey, N. F. Stewart, “Guaranteed error bounds for the initial value problem using polytope arithmetic”, BIT, 16 (1976), 257–268 | DOI | MR | Zbl

[3] K. G. Guderley, C. L. Keller, “A basic theorem in the computation of ellipsoidal error bounds”, Numer. Math., 19 (1972), 218–229 | DOI | MR | Zbl

[4] A. Neumaier, “The wrapping effect, ellipsoid arithmetic, stability and confidence regions”, Computing Suppl., 9 (1993), 175–190 | Zbl

[5] F. L. Chernousko, Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988 | MR

[6] W. Kühn, “Rigorously Computed Orbits of Dynamical Systems without the Wrapping Effect”, Computing, 61 (1998), 47–67 | DOI | MR | Zbl

[7] L. Zholen, M. Kifer, O. Didri, E. Valter, Prikladnoi intervalnyi analiz, Institut kompyuternykh issledovanii, M.–Izhevsk, 2007

[8] B. S. Dobronets, S. L. Roschina, “Spetsialnye priblizheniya mnozhestv reshenii sistem ODU s intervalnymi parametrami”, Voprosy matematicheskogo analiza, 2002, no. 5, 12–17

[9] H. Beeck, “Über die Struktur und Abschätzungen der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten”, Computing, 10 (1972), 231–244 | DOI | MR | Zbl