Domains of Convergence of Hypergeometric Series of Several Complex Variables
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 2, pp. 221-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the well-known result of Ja. Horn on the domain of convergence for hypergeometric series of several complex variables.
Mots-clés : domain of convergence
Keywords: hypergeometric series, parametrization of Horn–Kapranov, the support of a series, amoeba.
@article{JSFU_2009_2_2_a9,
     author = {Anastasiya Yu. Semusheva and August K. Tsikh},
     title = {Domains of {Convergence} of {Hypergeometric} {Series} of {Several} {Complex} {Variables}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {221--229},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a9/}
}
TY  - JOUR
AU  - Anastasiya Yu. Semusheva
AU  - August K. Tsikh
TI  - Domains of Convergence of Hypergeometric Series of Several Complex Variables
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 221
EP  - 229
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a9/
LA  - ru
ID  - JSFU_2009_2_2_a9
ER  - 
%0 Journal Article
%A Anastasiya Yu. Semusheva
%A August K. Tsikh
%T Domains of Convergence of Hypergeometric Series of Several Complex Variables
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 221-229
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a9/
%G ru
%F JSFU_2009_2_2_a9
Anastasiya Yu. Semusheva; August K. Tsikh. Domains of Convergence of Hypergeometric Series of Several Complex Variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a9/

[1] I. M. Gelfand, M. I. Graev, V. S. Retakh, “Obobschennye gipergeometricheskie sistemy uravnenii i ryady gipergeometricheskogo tipa”, Uspekhi matem. nauk, 47:4 (1992), 3–82 | MR | Zbl

[2] B. V. Shabat, Vvedenie v kompleksnyi analiz, Ch. 2, Nauka, M., 1976 | MR

[3] V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, D. van Straten, “Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians”, Nucl. Phys. B, 514:3 (1998), 640–666 | DOI | MR | Zbl

[4] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[5] J. Horn, “Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen”, Math. Ann., 34 (1889), 544–600 | DOI | MR

[6] M. Passare, T. Sadykov, A. Tsikh, “Singularities of hypergeometric functions in several variables”, Compositio Math., 141 (2005), 787–810 | DOI | MR | Zbl

[7] T. M. Sadykov, “On the Horn system of partial differential equations and series of hypergeometric type”, Math. Scand., 91 (2002), 127–149 | MR | Zbl

[8] M. Sato, “Theory of prehomogeneous vector spaces (algebraic part)”, Nagoya Math. J., 120 (1990), 1–34 | MR | Zbl