Riordan's Arrays and Two-dimensional Difference Equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 2, pp. 210-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe of rational Riordan's arrays appearing in combinatorial analysis in terms of solutions of a Cauchy problem for a two-dimensional difference equation. The asymptotics of such arrays has been investigated.
Keywords: Riordan's arrays, multidimensional difference equations, Cauchy problem, the amoeba of a characteristic polynomial.
@article{JSFU_2009_2_2_a8,
     author = {Alexander P. Lyapin},
     title = {Riordan's {Arrays} and {Two-dimensional} {Difference} {Equations}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {210--220},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a8/}
}
TY  - JOUR
AU  - Alexander P. Lyapin
TI  - Riordan's Arrays and Two-dimensional Difference Equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 210
EP  - 220
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a8/
LA  - ru
ID  - JSFU_2009_2_2_a8
ER  - 
%0 Journal Article
%A Alexander P. Lyapin
%T Riordan's Arrays and Two-dimensional Difference Equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 210-220
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a8/
%G ru
%F JSFU_2009_2_2_a8
Alexander P. Lyapin. Riordan's Arrays and Two-dimensional Difference Equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 2, pp. 210-220. http://geodesic.mathdoc.fr/item/JSFU_2009_2_2_a8/

[1] L. W. Shapiro, S. Getu, W.-J. Woan, L. Woodson, “The Riordan group”, Discrete Applied Mathematics, 34 (1991), 229–239 | DOI | MR | Zbl

[2] D. Merlini, “Generating functions for the area below some lattice paths”, Discrete random walks (Paris, 2003), Disc. Math. and Theor. Comp. Sci. Proc., AC, 2003, 217–228 | MR | Zbl

[3] D. Baccherini, D. Merlini, R. Sprugnoli, “Level generation trees and proper Riordan arrays”, Applicable Analysis and Discrete Mathemamatics, 2 (2008), 69–91 | DOI | MR

[4] G. P. Egorychev, Integralnoe predstavlenie i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977 | MR | Zbl

[5] M. Abramson, W. Moser, “Combinations, successions and the $n$-kings problem”, Math. Mag., 39:5 (1966), 269–273 | MR | Zbl

[6] D. M. Bloom, “Singles in a Sequence of Coin Tosses”, The College Mathematics Journal, 29:2 (1998), 120–127 | DOI | MR | Zbl

[7] A. K. Tsikh, “Usloviya absolyutnoi skhodimosti ryada iz koeffitsientov Teilora meromorfnykh funktsii dvukh peremennykh”, Mat. sb., 182:11 (1981), 1588–1612 | MR | Zbl

[8] A. G. Orlov, “Ob asimptotike koeffitsientov Teilora ratsionalnykh funktsii dvukh peremennykh”, Izv. vuzov. Matem., 1993, no. 6, 26–33 | MR | Zbl

[9] R. Pemantle, M. Wilson, “Asymptotics of multivariate sequences, part I: smooth points of the singular variety”, J. Comb. Th. Ser. A, 97 (2002), 129–161 | DOI | MR | Zbl

[10] M. Wilson, “Asymptotics for generalized Riordan arrays”, International Conference on Analysis of Algorithms, Discrete Math. Theor. Comput. Sci. Proc., AD, 2005, 323–333 | MR | Zbl

[11] E. K. Leinartas, M. Passare, A. K. Tsikh, “Asimptotika mnogomernykh raznostnykh uravnenii”, Uspekhi mat. nauk, 60:5 (2005), 171–172 | MR | Zbl

[12] E. K. Leinartas, M. Passare, A. K. Tsikh, “Mnogomernye versii teoremy Puankare dlya raznostnykh uravnenii”, Mat. sbornik, 199:10 (2008), 87–104 | MR | Zbl

[13] M. Bousquet-Mélou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, DM, 225 (2000), 51–75 | MR | Zbl

[14] E. K. Leinartas, “Kratnye ryady Lorana i fundamentalnye resheniya lineinykh raznostnykh uravnenii”, Sib. mat. zhurn., 48:2 (2007), 335–340 | MR | Zbl

[15] M. Forsberg, M. Passare, A. Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Math., 151 (2000), 45–70 | DOI | MR | Zbl